
10-702 Statistical Machine Learning: Assignment 3 Solution

1. (a)

log p(x) = β0 +
d∑

j=1

βjXj +
d∑

j<k

βjkXjXk + · · ·+
d∑

j<k<`

βjk`XjXkX` + · · ·+ (1)

Since βA = 0 whenever {1, 2} ⊂ A, all the terms in the above linear right hand side can be partitioned
into 3 parts :

• containing X3, ...Xd and no terms containing X1 and X2

• containing X1, X3, ...Xd and no terms containing X2

• containing X2, X3, ...Xd and no terms containing X1

That is, there will not be any terms containing both X1 and X2, since their corresponding βA will be
zero.

log p(x) = f1(X3, ...Xd) + f2(X1, X3, ...Xd) + f3(X3, X3, ...Xd)

p(x) = ef1(X3,...Xd) ef2(X1,X3,...Xd) ef3(X2,X3,...Xd)

Using appropriate probability normalization, we can express this as

p(x) = P (X3, ...Xd)P (X1|X3, ...Xd)P (X2|X3, ...Xd) (2)

However, from factorization, we know that

p(x) = P (X3, ...Xd)P (X1, X2|X3, ...Xd) (3)

From the above two equations, we see that

P (X1|X3, ...Xd)P (X2|X3, ...Xd) = P (X1, X2|X3, ...Xd) (4)

which implies that
X1 qX2

∣∣∣ X3, . . . , Xd.

Thus proved.

(b) For any i,

max
xj ,j 6=i

p (x1, . . . , x
∗
i , . . . , xd) = mi (x∗i )

= max
xi

mi (xi) (with uniqueness)

= max
xi

max
xj ,j 6=i

p (x1, . . . , xd)

which implies

x∗i = arg max
xi

[
max

xj ,j 6=i
p (x1, . . . , xd)

]
(with uniqueness) (5)

We may then conclude that

x∗ = (x∗1, . . . , x
∗
d) = arg max

x
p (x1, . . . , xd) (with uniqueness)

i.e. x∗ is the unique mode of p. Proof: suppose x∗ is not the unique mode of p. Then there exists
x′ = arg maxx p (x1, . . . , xd) such that x′ 6= x∗. This implies

x′i = arg max
xi

[
max

xj ,j 6=i
p (x1, . . . , xd)

]

for all i, which contradicts equation (5) for any i such that x′i 6= x∗i .
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(c) One set of integers is mi = 1 − Di, where Di is the degree of vertex xi. Proof: G is a tree, so we
can number the vertices such that x1 is the root, and xj is a descendant of xi for j > i. Let all edges
(i, j) ∈ E be such that i < j. Then

fm (x1, . . . , xd) =
d∏

i=1

pi (xi)
1−Di

∏

(i,j)∈E

pij (xi, xj)

=

∏
(i,j)∈E pij (xi, xj)∏d

i=1 pi (xi)
Di−1

=

∏
(i,j)∈E pj|i (xj | xi) pi (xi)∏d

i=1 pi (xi)
Di−1

=

[∏
(i,j)∈E pj|i (xj | xi)

] [
p1 (x1)

Di

] [∏d
i=2 pi (xi)

Di−1
]

∏d
i=1 pi (xi)

Di−1

(every vertex has one parent, except for x1)

= p1 (x1)
∏

(i,j)∈E

pj|i (xj | xi)

Observe that for any j,
´

pj|i (xj | xi) dxj = 1 for any value of xi. Also note that each vertex xj for j ≥ 2
appears exactly once in

∏
(i,j)∈E pj|i (xj | xi) (not counting the xi being conditioned upon), while x1 does

not appear at all. Hence we can integrate out one term at a time to get
´ · · · ´ fm (x1, . . . , xd) dx1 . . . dxd =

1. Finally, fm is nonnegative since pi (xi) and pij (xi, xj) are nonnegative.
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(a)

(i)

The distribution of X is not in the exponential family.

Assume for a contradiction that X is in the exponential family. Then for some φ (x), the pdf of x takes the
form

fθ (x) = a (x) exp
(
θ>φ (x)−Ψa,φ (θ)

)

where θ is a vector-valued function of p, and a (x) does not depend on θ (and hence p). We know that
fθ (x) = 0 for x < 0 or x > p. Since the exponential function is never zero, it must be the case that a (x) = 0
for x < 0 or x > p, implying that a (x) depends on p. Contradiction, hence the distribution of X is not in the
exponential family.

(ii)

The distribution of Y is in the exponential family.

We need to show that

fY,θ (y) = a (y) exp
(
θ>φ (y)−Ψa,φ (θ)

)

for some a (y) , θ, φ (y) ,Ψa,φ (θ). Observe that y (x) = exp (x) is a monotone, 1-to-1 transformation. Hence
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x (y) = log y and

fY (y) = fX (x (y))
∣∣∣∣
dx (y)

dy

∣∣∣∣

= fX (log y)
1
y

=
1√
2πσ

exp
(
− 1

2σ2
(log y)2

)
1
y

= exp
(
− 1

2σ2
(log y)2 − log y − log

√
2πσ2

)

= exp
(
− 1

2σ2
(log y)2 − log y − 1

2
log 2πσ2

)

Let

a (y) = 1

θ =
[ − 1

2σ2

−1

]

φ (y) =
[

(log y)2

log y

]

Ψa,φ (θ) =
1
2

log 2πσ2 =
1
2

log
−π

θ

and confirm that

log
ˆ ∞

0

exp
(
θ>φ (y)

)
dy = log

ˆ ∞

0

exp
(
− 1

2σ2
(log y)2 − log y

)
dy

= log
ˆ ∞

−∞
exp

(
− 1

2σ2
x2 − x

)
exp (x) dx

= log
ˆ ∞

−∞
exp

(
− 1

2σ2
x2

)
dx

= log
(√

2πσ
)

= Ψa,φ (θ)

Hence

fY,θ (y) = a (y) exp
(
θ>φ (y)−Ψa,φ (θ)

)

which was to be shown.

(iii)

The distribution of X is in the exponential family.

We need to show that

fθ (x) = a (x) exp
(
θ>φ (x)−Ψa,φ (θ)

)

for some a (x) , θ, φ (x) ,Ψa,φ (θ). We have that

f (x; a, b) =
Γ (a + b)
Γ (a) Γ (b)

xa−1 (1− x)b−1
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Note that Γ(a+b)
Γ(a)Γ(b) = 1

B(a,b) , where B (a, b) is the beta function defined by

B (a, b) =
ˆ 1

0

xa−1 (1− x)b−1
dx

Hence

f (x; a, b) =
1

B (a, b)
xa−1 (1− x)b−1

= exp ((a− 1) log x + (b− 1) log (1− x)− log B (a, b))

Let

a (x) = 1

θ =
[

a− 1
b− 1

]

φ (x) =
[

log x
log (1− x)

]

Ψa,φ (θ) = log B (a, b) = log B (θ1 + 1, θ2 + 1)

and confirm that

log
ˆ 1

0

exp
(
θ>φ (x)

)
dx = log

ˆ 1

0

exp ((a− 1) log x + (b− 1) log (1− x)) dx

= log
ˆ 1

0

xa−1 (1− x)b−1
dx

= log B (a, b)
= Ψa,φ (θ)

Hence

fθ (x) = a (x) exp
(
θ>φ (x)−Ψa,φ (θ)

)

which was to be shown.

(b)

Rewrite the optimization problem as

min
p1,...,pm

m∑

j=1

pj log pj

s.t.
−pj ≤ 0 j ∈ {1, . . . , m}


m∑

j=1

pj


− 1 = 0




m∑

j=1

pjφk (j)


− µk = 0 k ∈ {1, . . . , d}

The Lagrangian is

L (p, λ, α, β) =




m∑

j=1

pj log pj


 +




m∑

j=1

λj (−pj)


 +


α


−1 +

m∑

j=1

pj





 +




d∑

k=1

βk


−µk +

m∑

j=1

pjφk (j)
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and the dual function is

` (λ, α, β) = inf
p
L (p, λ, α, β)

Solving for the infimum with respect to p,

dL
dpj

= 0

(log pj + 1)− λj + α +
d∑

k=1

βkφk (j) = 0

log pj = λj − 1− α− β>φ (j)
p∗j = pj = exp

(
λj − α− β>φ (j)− 1

)

Hence

` (λ, α, β) =




m∑

j=1

p∗j log p∗j


−




m∑

j=1

p∗jλj


 +


α


−1 +

m∑

j=1

p∗j





 +




d∑

k=1

βk


−µk +

m∑

j=1

p∗jφk (j)







=




m∑

j=1

p∗j log p∗j


−




m∑

j=1

p∗jλj


− α +




m∑

j=1

p∗jα


 +




m∑

j=1

p∗jβ
>φ (j)


− β>µ

=




m∑

j=1

p∗j
(
log p∗j − λj + α + β>φ (j)

)

− α− β>µ

=


−

m∑

j=1

p∗j


− α− β>µ

= −β>µ− α− e−α−1
m∑

j=1

exp
(
λj − β>φ (j)

)

Note that p∗j = exp
(
λj − β>φ (j)

)
exp (−α− 1) satisfies

∑m
j=1 p∗j = 1, and therefore exp (−α− 1) must be a

normalizing factor:

exp (−α− 1) =
1∑m

j=1 exp (λj − β>φ (j))

exp (α + 1) =
m∑

j=1

exp
(
λj − β>φ (j)

)

α =


log

m∑

j=1

exp
(
λj − β>φ (j)

)

− 1

Thus we can eliminate α:

` (λ, α, β) = −β>µ− α− e−α−1
m∑

j=1

exp
(
λj − β>φ (j)

)

` (λ, β) = −β>µ−

log

m∑

j=1

exp
(
λj − β>φ (j)

)

 + 1−

∑m
j=1 exp

(
λj − β>φ (j)

)
∑m

j=1 exp (λj − β>φ (j))

` (λ, β) = −β>µ− log
m∑

j=1

exp
(
λj − β>φ (j)

)
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Finally, observe that

exp ` (λ, β) = exp
(−β>µ

)
exp


− log

m∑

j=1

exp
(
λj − β>φ (j)

)



=
exp

(−β>µ
)

∑m
j=1 exp (λj − β>φ (j))

which is the likelihood of an exponential family, provided that β, λ satisfy m exp
(−β>µ

)
=

∑m
j=1 exp

(
λj − β>φ (j)

)
.

3

(a)

Theorem 26.18: Fix any δ > 0. Then

sup
p∈Σ(β,L)

P

(
|p̂ (x)− p (x)| >

√
C log (2/δ)

nhd
+ chβ

)
< δ

We now repeat the proof with Hoeffding’s inequality. By definition, p̂ (x) = n−1
∑n

i=1 Zi where

Zi =
1
hd

K

(‖x−Xi‖
h

)

Let ph (x) = E (p̂ (x)). Observe that

E (p̂ (x)− ph (x)) = 0

and

|Zi| ≤ c1

hd

where c1 = K (0) (the kernel is maximized at K (0)), which in turn implies

|Zi − ph (x)| ≤ c1

hd

We then apply Hoeffding’s inequality:

P (|p̂ (x)− ph (x)| > ε) < 2 exp
{ −2nε2

4c2
1/h2d

}

= 2 exp
{−nh2dε2

2c2
1

}

Choosing ε =
√

C log (2/δ) /nh2d where C = 2c2
1 gives

P

(
|p̂ (x)− ph (x)| >

√
C log (2/δ)

nh2d

)
< δ (6)

Observe the h2d factor where Bernstein’s inequality would have given hd. By the triangle inequality, for any
p we have that

|p̂ (x)− p (x)| ≤ |p̂ (x)− ph (x)|+ |ph (x)− p (x)|
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From Lemma 26.11, |ph (x)− p (x)| ≤ chβ for some c, and therefore

|p̂ (x)− p (x)| ≤ |p̂ (x)− ph (x)|+ chβ

for any p. Comparing this with (6) gives the result

sup
p∈Σ(β,L)

P

(
|p̂ (x)− p (x)| >

√
C log (2/δ)

nh2d
+ chβ

)
≤ P

(
|p̂ (x)− ph (x)|+ chβ >

√
C log (2/δ)

nh2d
+ chβ

)
< δ

The
√

h−2d factor (as opposed to
√

h−d from Bernstein’s inequality) makes the corresponding term in the
probability statement larger, hence the bound is weaker. Compare Bernstein’s inequality

P
(∣∣Z̄ − µ

∣∣ > ε
)

< 2 exp
{
− nε2

2σ2
Z + 2MZε/3

}

with Hoeffding’s inequality

P
(∣∣Z̄ − µ

∣∣ > ε
)

< 2 exp

{
− 2nε2

(bZ−µ − aZ−µ)2

}

Observe that the denominator in Bernstein’s inequality is O
(
σ2

Z + MZ

)
, while the denominator in Hoeffding’s

inequality is O
(
(bZ−µ − aZ−µ)2

)
. Because |Zi| ≤ MZ = c1

hd and σ2
Z ≤ c2

hd (Lemma 26.13), the denominator

in Bernstein’s inequality is O
(
h−d

)
. But bZ−µ − aZ−µ ≤ 2c1

hd , so the denominator in Hoeffding’s inequality is
O

(
h−2d

)
. In short, the reason why Bernstein’s inequality yields the better rate since it utilizes the information

of variance.

(b)

The LOOCV estimator of risk, for a particular bandwidth h, is

R̂ (h) =
ˆ

(p̂ (x))2 dx− 2
n

n∑

i=1

p̂(−i) (Xi)

where

p̂ (x) =
1
n

n∑

i=1

1
hd

K

(‖x−Xi‖
h

)

Suppose xa = xb for some a 6= b, and assume this is the only tie in the data. Consider the LOOCV estimator
with xa held-out, evaluated at xa:

p̂(−a) (xa) =
1

n− 1
1
hd

K

(‖xa − xb‖
h

)
+

1
n− 1

∑

i/∈{a,b}

1
hd

K

(‖xa − xi‖
h

)

=
1

n− 1
1
hd

K

(
0
h

)
+

1
n− 1

∑

i/∈{a,b}

1
hd

K

(‖xa − xi‖
h

)

As h → 0, the distribution of the kernel approaches a point mass at 0. Hence the first term approaches ∞
and the second term approaches 0. Thus limh→0 p̂(−a) (xa) = ∞, and

lim
h→0

R̂ (h) = lim
h→0

[ˆ
(p̂ (x))2 dx− 2

n

n∑

i=1

p̂(−i) (Xi)

]

= lim
h→0



ˆ

(p̂ (x))2 dx− 2
n


p̂(−a) (Xa) +

n∑

i 6=a

p̂(−i) (Xi)







= −∞
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Therefore cross-validation will choose ĥ = 0 because it yields the smallest estimated risk.

To fix this problem, we can remove all but one of the K tied data points, and “reweigh” the remaining point
by K. Let us refer to the earlier example — in this case, we remove xb from the data, and double the weight
of the kernel xa to get the following kernel density estimator:

p̂∗ (x) =
1
n


 2

hd
K

(‖x− xa‖
h

)
+

∑

i 6=a

1
hd

K

(‖x− xi‖
h

)


and the following LOOCV estimator:

p̂∗(−j) (x) =





1
n−1

[
2

hd K
(
‖x−xa‖

h

)
+

∑
i/∈{a,j}

1
hd K

(
‖x−xi‖

h

)]
j 6= a

1
n−2

∑
i 6=j

1
hd K

(
‖x−xi‖

h

)
j = a

We also double the weight of xa in the LOOCV risk estimator:

R̂∗ (h) =
ˆ

(p̂ (x))2 dx− 2
n


2p̂∗(−a) (Xa) +

∑

i 6=a

p̂∗(−i) (Xi)




Observe the following:

(a) p̂∗ (x) = p̂ (x), i.e. the new kernel density estimator is identical to the previous one.

(b) p̂∗(−j) (xj) = p̂(−j) (xj) when j 6= a, i.e. the LOOCV estimator is identical when the held-out data point
is not xa.

(c) The only difference occurs when xa is held out, that is to say p̂∗(−a) (xa) 6= p̂(−a) (xa). However,
limh→0 p̂∗(−a) (xa) = 0 because there are no ties (xa 6= xi for any i 6= a since xb was removed). Hence

limh→0 R̂∗ (h) 6= −∞, so the problem has been fixed.
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(c)

L̂ (D) =
ˆ

[0,1]

f̂2
X,D (x) dx− 2

n

n∑

i=1

f̂
(i)
X,D (Xi)

=
ˆ

[0,1]

(
D

n

n∑

i=1

I {Xi ∈ B (x)}
)2

dx− 2
n

n∑

i=1


 D

n− 1

n∑

j 6=i

I {Xj ∈ B (Xi)}



=
D2

n2

ˆ

[0,1]

(
n∑

i=1

I {Xi ∈ B (x)}
)2

dx− 2D

n (n− 1)

n∑

i=1

n∑

j 6=i

I {Xj ∈ B (Xi)}

=
D2

n2

D∑

k=1

1
D

(
n∑

i=1

I {Xi ∈ Bin (k)}
)2

− 2D

n (n− 1)

n∑

i=1

(|B (Xi)| − 1)

=
D

n2

D∑

k=1

|Bin (k)|2 − 2D

n (n− 1)

D∑

k=1

|Bin (k)| (|Bin (k)| − 1)

=
D

n2

D∑

k=1

|Bin (k)|2 − 2D

n (n− 1)

D∑

k=1

|Bin (k)|2 +
2D

n (n− 1)

D∑

k=1

|Bin (k)|

=
D

n− 1

[(
n− 1
n2

− 2
n

) D∑

k=1

|Bin (k)|2
]

+
2D

n− 1

=
2D

n− 1
+

D

n− 1

[(−n− 1
n2

) D∑

k=1

|Bin (k)|2
]

=
2D

n− 1
− D (n + 1)

n− 1

D∑

j=1

( |Bin (j)|
n

)2

which was to be shown.

4

Summary of results:
a 0.1 0.5 0.95

glasso best ` 95310 94974 94924
glasso λ from best ` 1× 10−5 1× 10−5 3.3× 10−6

glasso
∥∥∥Σ̂− Σ

∥∥∥
F

from best ` 0.101 0.169 3.91

thresholding best ` 95328 93368 97852
thresholding M from best ` 3.3× 10−4 3.3× 10−4 1× 10−3

thresholding
∥∥∥Σ̂− Σ

∥∥∥
F

from best ` 0.101 0.170 3.91

Values of λ and M were selected from
{
1× 10−7, 3.3× 10−7, 1× 10−6, . . . , 3.3× 10−1, 1

}
.

• At their optimal tuning parameters, both glasso and thresholding perform equally well in terms of log-
likelihood and

∥∥∥Σ̂− Σ
∥∥∥

F
. According to the analytical expression for cov (t1, t2), there is a continuum

between the non-sparse entries on the diagonal and the sparse entries at the upper-right and lower-left
corners — that is to say, the distinction between sparse and non-sparse entries is unclear. In principle,
glasso should perform better — it minimizes the negative log-likelihood subject to an `1 penalty, while
the thresholding procedure uses a cutoff that merely depends on n and T ; glasso considers statistical
properties of the data that the thresholding procedure ignores. However, the aforementioned continuum
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suggests that an appropriately chosen cutoff is adequate for the problem. Hence glasso and thresholding
perform equally well under their optimal tuning parameters.

• According to the analytical expression for cov (t1, t2), the true covariance matrix has its largest elements
σ2 1−a2t1

1−a2 on the diagonal, while the off-diagonal elements decrease exponentially at the rate of a|t2−t1|.
Hence the the proportion of sparse entries decreases as a → 1. Both glasso and thresholding favor sparse
estimates of the covariance, consequently

∥∥∥Σ̂− Σ
∥∥∥

F
increases for both methods as we increase a (and

hence decrease sparsity).

We now give the analytical expression for cov (t1, t2). We first assume that t1 ≤ t2:

cov (t1, t2) = cov (Xt1 , Xt2)
= E

[(
Xt1 − X̄t1

) (
Xt2 − X̄t2

)]

= E [Xt1Xt2 ] (all Xts have mean 0)
= E [Xt1 (aXt2−1 + εt2−1)]
= E [Xt1 (a (aXt2−2 + εt2) + εt2−1)]
...
= E

[
Xt1

(
at2−t1Xt1 + at2−t1−1εt1 + at2−t1−2εt1+1 + · · ·+ aεt2−2 + εt2−1

)]

= at2−t1E
[
X2

t1

]
+ at2−t1−1E [Xt1εt1 ] + · · ·+ E [Xt1εt2−1]

Observe that E [Xt1εti
] = E

[(
Xt1 − X̄t1

)
(εti

− ε̄ti
)
]

= cov (Xt1 , εti
) = 0 for all ti > t1. Hence

cov (t1, t2) = at2−t1E
[
X2

t1

]

= at2−t1E
[(

Xt1 − X̄t1

)2
]

(Xt1 has mean 0)

= at2−t1V [Xt1 ]
= at2−t1V

[
at1X0 + at1−1ε0 + at1−2ε1 + · · ·+ εt1−1

]

= at2−t1
(
0 + a2(t1−1)σ2 + a2(t1−2)σ2 · · ·+ σ2

)
(εts are uncorrelated)

= at2−t1σ2
t1−1∑

i=0

a2i

= at2−t1σ2 1− a2t1

1− a2

= σ2 at2−t1 − at2+t1

1− a2

Since cov (t1, t2) = cov (t2, t1), we have that

cov (t1, t2) = σ2 a|t2−t1| − at2+t1

1− a2
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