
10-702 Statistical Machine Learning: Assignment 2 Solutions
1. Convex sets and functions

(a) • First, we prove that if p ≥ 1, then C is convex set. Let g(x) = |x|, where x ∈
R. g(x) is convex function. Let h(y) = yp, where y > 0 and p ≥ 1. Since
h′(y) = pyp−1 ≥ 0 and h′′(y) = p(p− 1)yp−2 ≥ 0 for y > 0 and p ≥ 1, h(y) is a
non-decreasing convex function. Therefore h(g(x)) = |x|p is a convex function.
∀x, y ∈ C, ‖x‖p

p =
∑n

j=1 |xj|p ≤ 1 and ‖y‖p
p =

∑n
j=1 |yj|p ≤ 1. According to

Jensen’s inequality, ∀λ ∈ [0, 1]:

‖λx + (1− λ)y‖p
p =

n∑
j=1

|λxj + (1− λ)yj|p

≤ λ
n∑

j=1

|xj|p + (1− λ)
n∑

j=1

|yj|p

≤ λ + (1− λ) = 1

Since ‖λx + (1− λ)y‖p ≤ 1, λx + (1− λ)y ∈ C. C is convex set
• Next for p < 1, let x = [1, 0, . . . , 0]T and y = [0, 1, . . . , 0]T and λ = 0.5:

‖λx + (1− λ)y‖p
p =

n∑
j=1

|λxj + (1− λ)yj|p = 2 · 0.5p = 21−p > 1

Therefore, λx + (1− λ)y 6∈ C. C is not convex set

(b) i. Convex function
The function can be separated into the two terms of the non-negative weighted
sum. Consider the individual arguments inside the max term. |x| is convex in x,
and 1− y is affine, so 1+ |x|− y is convex. Also, 1√

z
is a negative-power function,

so it is convex in z. The max term is convex, since each of its arguments is convex.
The second term (x−z)2

y+1
is the composition of the quadratic-over-linear function s2

t

with the affine function that maps (x, y, z) to (x−z, y+1) – so this term is convex.
The function f(x, y, z) is the nonnegative weighted sum of convex functions, and
thus is convex.

ii. Concave function
Let g(t) = f(X + tV ) with dom(t) = {t|X + tV � 0, X ∈ Sn

++, V ∈ Sn}.

g(t) = (det(X + tV ))1/n = (det(X))1/n (
det(I + tX−1/2V X−1/2)

)1/n

Let λ1, . . . , λn as the eigenvalues of X−1/2V X−1/2, then(
det(I + tX−1/2V X−1/2)

)1/n
= (Πn

i=1(1 + tλi))
1/n
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Define h(t) =
(
det(I + tX−1/2V X−1/2)

)1/n which can be written in the form of
vector composition:

h(t) = h(x1, . . . , xn) = (Πn
i=1xi)

1/n ,

where xi = ϕi(t) = 1 + tλi.
h(x1, . . . , xn) is the geometric mean which is a concave function in x1, . . . , xn and
each xi is a linear function in t. So

h′′(t) = φ(t)T∇2h(x)φ(t) +∇h(x)T φ′′(t) = φ(t)T∇2h(x)φ(t) ≤ 0

Therefore, h(t) is a concave function in t and hence g(t) is concave in t. f(X) =

(det(X))1/n is concave in X .

(c) Since f is a differential convex function, ∀x, y ∈ C:

f(y) ≥ f(x) +∇f(x)T (y − x)

f(x) ≥ f(y) +∇f(y)T (x− y)

By adding them up, we obtain the result.
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2. (Convex Conjugacy)

(a)
f ∗(a, z) = sup

x,y
{xa + yz − f(x, y)}

= sup
x,y

{xa + yz − f1(x)− f2(y)}

= sup
x,y

{{xa− f1(x)}+ {yz − f2(y)}}

Since the two bracketed terms do not share any variables, we can maximize over each
separately

f ∗(a, z) = sup
x
{xa− f1(x)}+ sup

y
{yz − f2(y)}

= f ∗1 (a) + f ∗2 (z)

Since we did not assume any convexity, this will hold even if f1 and f2 are not convex.

(b) For a convex mapping f : R 7→ R, the convex conjugate is defined as

f ∗(z) := sup
x
{xz − f(x)}.

This implies that for any x, y ∈ R,

f ∗(y) ≥ xy − f(x),

and, in particular,

λif
∗(y) + λif(xi) ≥ λixiy, i = {1, . . . , n}. (1)

Summing Eq. (1) over all values of i and recalling that
∑n

i=1 λi = 1 gives

f ∗(y) +
∑

i

λif(xi) ≥ y
∑

i

λixi

which holds for all values of y ∈ R and in particular∑
i

λif(xi) ≥ sup
y
{y

∑
i

λixi − f ∗(y)}

= f(
∑

i

λixi),

where the equality follows from the definition of the convex conjugate and the fact that
f = f ∗∗. This proves the inequality.
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(c) (Solution Provided by Carl Doersch)

i. Observe that f ′′(x) = 1
x

> 0 for x > 0, so f is convex. Next, we compute the
convex conjugate

f ∗(y) = sup
x
{xy − x ln x + x}.

∂
∂x

(xy − x ln(x) + x) = y − ln(x) = 0. So, x∗ = exp(y).
f ∗(y) = (exp(y)y − exp(y)y + exp(y)) = exp(y).

Bi-Conjugate function f ∗∗(x) = supy(xy − exp(y)).
For x < 0, f ∗∗(x) is unbounded since y → −∞.
For x = 0, f ∗∗(x) = 0.
For x > 0, ∂

∂y
(xy − exp(y)) = x− exp(y) = 0. So, y∗ = ln(x).

f ∗∗(x) = (x ln(x)− x).

f ∗∗(x) =


∞ if x < 0
0 if x = 0
x ln(x)− x if x > 0

So f ∗∗ is almost equal to f except at x = 0.
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ii. This function is the pointwise supremum over a set of linear functions so it is
convex. Define the indicator function g(z) = 1I{z ∈ C}. Observe that g∗(x) =
supz {xT z − g(z)} = supz∈C xT z = f(x), so that g∗∗ = f ∗. But since g is a
closed and convex function g = g∗∗ and f ∗(z) = 1I{z ∈ C}. The dual of f ∗ is f
since f is closed and convex.

iii.
f ∗(y) = sup

x
{yx− (max(1− x, 0))2}.
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It is easy to see that for y > 0, f ∗(y) = ∞. Otherwise, for y ≤ 0,

sup
x≤1

{yx− (max(1− x, 0))2} = sup
x≤1

{yx− (1− x)2} =
y2

4
+ y

and
sup
x>1

{yx− (max(1− x, 0))2} = sup
x>1

{yx} = y.

Therefore

f ∗(y) =

{
y + y2/4 y ≤ 0
∞ y > 0

f ∗∗(x) = supy {xy−f ∗(y)}. Note that the slope of f ∗ at zero is 1, so for x < 1, xy
lies entirely underneath f ∗(y) except at 0. For x > 1, the slopes match somewhere
on y < 0. Thus, we take the derivative and solve to find:

f ∗∗(x) =

{
(1− x)2 x ≥ 1
0 x > 1

Since f ∗∗ = f , f is convex.
iv. f is a convex function as a pointwise maximum of two convex functions. The

conjugate f ∗(y) = ∞ when y < −1 (for x → ∞) or y > 0 (for x → −∞).
For any other values of y, we can split the supremum into x > 1 and x ≤ 1, and
conclude that f ∗(y) = y. Combining the two, the convex conjugate is given as

f ∗(y) =

{
y if y ∈ [−1, 0]
∞ otherwise.

f ∗∗(x) = supy {xy − f ∗(y)} = supy∈[−1,0] {xy − y} = max(1− x, 0) = f(x)
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(d) i.
f ∗(B) = sup

A
{tr(AB)− f(A)}

= sup
A
{tr(AB)− tr(AS) + log detA}

= sup
A
{tr(A(B − S)) + log detA}

(2)

Differentiating wrt A and setting to 0,

(B − S)T + (A−1)T = 0,

which gives Â = (S − B)−1. Note that, since f(A) is defined only for positive
definite matrices, we require that (S − B)−1 � 0, else f ∗(B) →∞. Substitute Â
back in f ∗(B),

f ∗(B) = tr(−(B − S)−1(B − S)) + log det(S −B)−1

= tr(−Ip)− log det(S −B),
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where Ip is the identity matrix in p dimensions. Thus,

f ∗(B) =

{
−p− log det(S −B) if (S −B)−1 � 0
∞ otherwise.

ii. Using the Lagrangian, we can formulate the dual as

sup
λ

inf
A
{tr(AS)− log detA + λ(tr(A)− L)}

= sup
λ

{
− sup

A
{−tr(AS) + log detA− λtr(A)} − λL

}
= sup

λ

{
− sup

A
{−tr(AS) + log detA + tr(A(−λ))} − λL

}
= sup

λ

{
− sup

A
{tr(A(−λIp))− tr(AS) + log detA} − λL

}
= sup

λ
{−f ∗(−λIp)− λL}

= sup
λ
{p + log det(S + λIp)− λL} .

This is the dual of our problem, subject to λ ≥ 0.
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3. (Subdifferentials and thresholding)

(a) i. Define
L(x) := (Z − x)2 + λ|x|.

A point µ̂ is a global minimum if and only if 0 ∈ ∂L(µ̂), i.e.,

0 ∈ −2(Z − x) + λ∂| · |(µ̂). (3)

Consider 3 cases (µ̂ < 0, µ̂ = 0, µ̂ > 0):
A. µ̂ > 0. Then Eq. (3) reduces to −2(Z − µ̂) + λ = 0, which implies

µ̂ = Z − λ

2
.

Note that µ̂ > 0 if Z > λ
2

B. µ̂ < 0. Then Eq. (3) reduces to −2(Z − µ̂)− λ = 0, which implies

µ̂ = Z +
λ

2
.

Note that µ̂ < 0 if Y < −λ
2

C. µ̂ = 0. Then, ∂| · |(µ̂) ∈ [−1, 1] and Eq. (3) reduces to :

−2Z − λc = 0

where c ∈ [−1, 1], which holds for

−λ

2
≤ Z ≤ λ

2
.

Thus combining the three cases, we get

µ̂ = sign(Z)

(
|Z| − λ

2

)
+

ii. Define
L(x) := (Z − x)2 + λx2,

which is differentiable and

∂L
∂x

= −2(Z − x) + 2λx.

Setting ∂L/∂x = 0 and solving for x gives

µ̂ =
Z

1 + λ
.
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iii. This penalty results in a hard-thresholding rule,

µ̂ =

{
Z if Z2 ≥ λ
0 otherwise. (4)

Define
L(x) := (Z − x)2 + λ 1I{x 6= 0}.

Observe that L(0) = Z2 and L(Z) = λ, so that µ̂ = 0 as long as λ > Z2.
Remark: In this question, you cannot use the subdifferential calculus, since 1I{x 6=
0} is not a convex function.

For pen(x) = x2, we will not have µ̂ = 0 unless λ → ∞. This can be seen from
the fact that Z has a density and µ̂ = Z

1+λ
so that P[µ̂ = 0] = 0. Note that this holds

irrespective of the true mean µ. The situation is different for pen(x) = |x|, when µ̂ = 0
whenever |Z| ≤ λ/2. When µ = 0, then P[|Z| ≥ λ/2] ≤ 2P[N (0, 1) ≥ λ/(2σ)] =
2(1 − Φ−1(λ/(2σ))), where Φ(·) is the CDF of the standard normal distribution, so
that µ̂ = 0 with high probability. When µ 6= 0, then P[|Z| ≥ λ/2] ≤ 2P[N (0, 1) ≥
(λ− |µ|)/(2σ)] = 2(1−Φ−1((λ− |µ|/(2σ))), so that µ̂ 6= 0 as long as |µ| > λ. From
the discussion, we can conclude that there is no correspondence between the squared
penalty and the Lasso penalty, unless λ →∞ or λ = 0.

(b) Define

L(x) :=
1

2

G∑
j=1

‖ZGj
− xGj

‖2 + λ1

G∑
j=1

pj∑
i=1

|xj,i|+ λ2

G∑
j=1

‖xGj
‖2.

Observe that

L(x) =
G∑

j=1

LGj
(xGj

)

=
G∑

j=1

{
1

2
‖ZGj

− xGj
‖2 + λ1

pj∑
i=1

|xj,i|+ λ2‖xGj
‖2

}
,

so that the optimization can be done over each group of variables Gj (j = 1, . . . , G)
separately. Without loss of generality, we can assume that there is only one group of
variables, i.e., G = 1, and write:

µ̂ = arg min
x∈Rp

1

2
‖Z − x‖2 + λ1

p∑
i=1

|xi|+ λ2‖x‖2,

where Z ∈ Rp. The subdifferential of L(·) is given as

∂L(·) = −(Z − x) + λ1t + λ2s (5)
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where t ∈ ∂| · | and s ∈ ∂‖ · ‖2. Recall

∂| · |(x) =

{
[−1, 1]p if x = 0
(sign(xj))

p
j=1 otherwise, (6)

and

∂‖ · ‖2(x) =

{
B2(1) if x = 0(

xj

‖x‖2

)p

j=1
otherwise. (7)

We consider the following three cases separately:

i. ‖µ̂‖2 = 0

ii. ‖µ̂‖2 6= 0, but ∃i such that µ̂i = 0

iii. ‖µ̂‖2 6= 0 and ∀i µ̂i 6= 0.

From Eq. (5) it follows that µ̂ = 0 if and only if for each i = 1, . . . , p the following
holds

si =
1

λ2

(Zi − λ1ti), (8)

with
∑

s2
i ≤ 1 and ti ∈ [−1, 1]. The RHS of Eq. (8) is minimized for

ti =

{ Zi

λ1
if |Zi

λ1
| ≤ 1

sign(Zi

λ1
) otherwise.

(9)

Combining Eq. (8) and (9), we have that µ̂ = 0 if and only if
p∑

i=1

s2
i ≤ 1 ∧ {ti ∈ [−1, 1]}p

i=1

⇔
p∑

i=1

(Zi − λ1ti)
2 ≤ λ2

2 ∧ {ti ∈ [−1, 1]}p
i=1

⇔
p∑

i=1

(
S

(1)
λ1

(Zi)
)2

≤ λ2
2

⇔ ‖S(1)
λ1

(Z)‖2 ≤ λ2.

(10)

Next, we consider the case when µ̂ 6= 0, but µ̂i = 0 for some i. From Eq. (5) it follows
that µ̂i = 0 if and only if

ti =
Zi

λ1

∈ [−1, 1]. (11)

Finally, consider the case when µ̂ 6= 0. From Eq. (5), for each i = 1, . . . , p we can
express µ̂i as

µ̂i + λ2
µ̂i

‖µ̂‖2

= Zi − λ1ti (12)

µ̂i =
Zi − λ1ti

1 + λ2

‖µ̂‖2

. (13)
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Squaring Eq. (13) and summing over all i = 1, . . . , p, gives∑
i

µ̂2
i = ‖µ̂‖2 =

∑
i(Zi − λ1ti)

2(
1 + λ2

‖µ̂‖2

)2 , (14)

which can be solved for ‖µ̂‖2 giving

‖µ̂‖2 =

√∑
i

(Zi − λ1ti)2 − λ2. (15)

We plug the expression for ‖µ̂‖2 back into Eq. (13) and obtain

µ̂i =

√∑
i

(Zi − λ1sign(Zi))2 − λ2

 Zi − λ1sign(Zi)√∑
i(Zi − λ1sign(Zi))2

=
(
‖S(1)

λ1
(Z)‖2 − λ2

) S
(1)
λ1

(Zi)

‖S(1)
λ1

(Z)‖2

.

(16)

Combing Eq. (10), (11) and (16), we obtain

µ̂ =
(
‖S(1)

λ1
(Z)‖2 − λ2

)
+

S
(1)
λ1

(Z)

‖S(1)
λ1

(Z)‖2

. (17)

The explicit expression given in Eq. (17) can be seen as a combination of two soft-
thresholding operations. First, the elements of the vector Z are soft-thresholded to
obtain Z̃ = S

(1)
λ1

(Z) and then

µ̂ = S
(2)
λ2

(Z̃) = S
(2)
λ2

(S
(1)
λ1

(Z)). (18)

(c) (⇒)

From the definition of subdifferential, for w ∈ ∂Ψ(y) implies that for all z ∈ R,

Ψ(z) ≥ Ψ(y) + wT (z − y)

wT y −Ψ(y) ≥ wT z −Ψ(z)
(19)

Since Eq. (19) holds for all z ∈ R,

wT y −Ψ(y) ≥ Ψ∗(w). (20)

Now, suppose y 6∈ ∂Ψ∗(w). Then for some z ∈ R,

Ψ∗(z) < Ψ∗(w) + yT (z − w)

yT w −Ψ∗(w) < yT z −Ψ∗(z) ≤ Ψ∗∗(y) = Ψ(y)
(21)

11



Now, Eq. (21) contradicts Eq. (20) and y ∈ ∂Ψ∗(w).
(⇐)

For y ∈ ∂Ψ∗(w) and for all z ∈ R,

Ψ∗(z) ≥ Ψ∗(w) + yT (z − w), (22)

and now the implication follows by repeating the above analysis.
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4. (Solution Provided by Carl Doersch)

b) Marginal regression
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d) Lars
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e) First of all, the forward stepwise regression does approximately what we would expect;
it begins by adding the first 10 real explanatory variables before steadily adding noise
variables with very small coefficients. Thus, after an initial steep reduction in error, the
error climbs slowly.
The marginal regression case is a bit more interesting. For large t it behaves similar
to the forward stepwise regression case. However, decreasing t does not do the same
thing as adding variables in stepwise regression; instead, marginal regression tends to
add other variables besides the real explanatory variables before adding all of the real
explanatory variables. This happens because some variables may happen to correlate
well with one of the 5 explanatory variables. In forward stepwise regression, irrelevant
variables wouldn’t be added, since the variance would already be explained by the first
ten variables variables. The marginal regression adds them without checking if they
actually explain the data better than the true explanatory variables. Furthermore, since
the variables may actually correlate reasonably well with the data, so that they will enter
the final model high coefficients. This could be avoided if we use marginal regression
to select variables and then use the ordinary least square regression to fit the variables.
The lasso behaves similarly to the forward stepwise regression, although it is slightly
worse, because the lasso tends to shrink the coefficients for the true explanatory vari-
ables. However, we can see that it tends to add the true explanatory variables to the
model in order of their strength as predictors.The model gets slightly worse as it allows
too many parameters to enter the model (lambda gets too small), and it gets arbitrarily
bad as lambda gets too large (too much shrinkage).
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