10-702 Statistical Machine Learning: Practice Midterm Exam

Submit solutions to any four of the following seven problems. Clearly indicate which problems you are submitting solutions for. Write your answers in the space provided; additional sheets are attached in case you need extra space.

Problem 1. Oracles and Consistency

Let $X \in \mathbb{R}$ and

$$Y = \gamma X^2 + \epsilon \tag{1}$$

where $\mathbb{E}(\epsilon) = 0$.

- (a) Find an expression for the oracle linear predictor. In other words, find β_* such that $m(x) = \beta_* x$ minimizes the predictive risk.
- (b) We are given *n* observations $(X_1, Y_1), \ldots, (X_n, Y_n)$ from (1). Give an estimator $\widehat{\beta}_n$ for β_* and show that it is consistent.

Problem 2. Model Selection

Suppose we have the following data:

Consider two regression models:

Model 1:
$$Y_i = \beta_0 + \epsilon_i$$

Model 2: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$

- (a) Use C_p to choose between these model. You may assume that $\sigma^2 = 1$. (Recall that the C_p penalty is $2|S|\sigma^2/n$.)
- (b) Fit the model $Y_i = \beta X_i + \epsilon_i$ using the lasso. That is, find $\hat{\beta}$ to minimize

$$\sum_{i} (Y_i - \beta X_i)^2 + \lambda |\beta|.$$

Problem 3. Convex Duality

Let $X_i \sim \text{Poisson}(\theta)$ be independent, with observations $\{X_1, X_2\} = \{5, 9\}$. Consider the optimization problem

$$\min_{\theta} \quad f(\theta)$$
 such that $|\theta| \le 6$

where $f(\theta) = -\log f_{\theta}(5) - \log f_{\theta}(9)$ is the negative log-likelihood, where $f_{\theta}(n) = \frac{e^{-\theta}\theta^n}{n!}$.

- (a) What is the solution to this problem?
- (b) Write the Lagrangian.
- (c) Derive the dual problem.
- (d) State the KKT conditions.

Problem 4. Convexity and Regularization

Let Y be the random variable

$$Y = \mu + \epsilon$$

where $\epsilon \sim N(0,1)$ and $\mu \in \mathbb{R}$ is a constant. Define $\hat{\mu}$ to be the value of μ that minimizes

$$M(\mu) = (Y - \mu)^2 + \lambda J(\mu)$$

where $\lambda > 0$. Consider three cases:

1.
$$J(\mu) = I(\mu \neq 0)$$

2. $J(\mu) = |\mu|$
3. $J(\mu) = \mu^2$.

- (a) For which cases is $M(\mu)$ convex?
- (b) Find $\hat{\mu}$ for all three cases.

Problem 5. Mixture Models and EM

Let $(Z_1, X_1, Y_1), \ldots, (Z_n, X_n, Y_n)$ be generated as follows:

$$Z_i \sim \text{Bernoulli}(p)$$

$$X_i \sim \text{Uniform}(0, 1)$$

$$\epsilon_i \sim N(0, \sigma^2)$$

$$Y_i \sim \begin{cases} 5X_i + \epsilon_i & \text{if } Z_i = 0\\ -5X_i + \epsilon_i & \text{if } Z_i = 1. \end{cases}$$

- (a) Assume we do not observe the Z_i 's or ϵ_i 's. Write the distribution f(x, y) of X and Y as a mixture.
- (b) Write down the likelihood function for p.
- (c) Write down the steps for the EM algorithm.
- (d) Find a consistent estimator of p that avoids using EM. Hint: find $\mathbb{E}(Y \mid X = x)$.

Problem 6. Linear Classification

Suppose that $\mathbb{P}(Y=1)=\mathbb{P}(Y=0)=\frac{1}{2}$ and

$$\begin{array}{ll} X \mid Y = 0 & \sim & N(0,1) \\ X \mid Y = 1 & \sim & \frac{1}{2}N(-5,1) + \frac{1}{2}N(5,1). \end{array}$$

- (a) Find an expression for the Bayes classifier and find an expression for the Bayes risk.
- (b) What linear classifier minimizes the risk and what is its risk?

Problem 7. Graphical Models

Let $X = (X_1, X_2, X_3, X_4, X_5)$ be a random vector distributed as

$$X \sim N(0, \Sigma)$$

where the covariance matrix Σ is given by

$$\Sigma = \frac{1}{15} \begin{pmatrix} 9 & -3 & -3 & -3 & -3 \\ -3 & 6 & 1 & 1 & 1 \\ -3 & 1 & 6 & 1 & 1 \\ -3 & 1 & 1 & 1 & 6 \end{pmatrix} \quad \text{with inverse} \quad \Sigma^{-1} = \begin{pmatrix} 3 & 1 & 1 & 1 & 1 \\ 1 & 3 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 \\ 1 & 0 & 0 & 3 & 0 \\ 1 & 0 & 0 & 0 & 3 \end{pmatrix}$$

- (a) What is the graph for X, viewed as a graphical model?
- (b) Which of the following independence statements are true?
 - (a) $X_2 \perp X_3 \mid X_1$ (b) $X_3 \perp X_4$ (c) $X_1 \perp X_3 \mid X_2$
 - (d) $X_1 \perp X_5$
- (c) List the local Markov properties for this graphical model.
- (d) Find the conditional density $p(X_2 | X_1 = -3)$.