10-702 Statistical Machine Learning: Practice Midterm Exam

Submit solutions to any four of the following seven problems. Clearly indicate which problems you are submitting solutions for. Write your answers in the space provided; additional sheets are attached in case you need extra space.

Problem 1. Oracles and Consistency
Let $X \in \mathbb{R}$ and

$$
\begin{equation*}
Y=\gamma X^{2}+\epsilon \tag{1}
\end{equation*}
$$

where $\mathbb{E}(\epsilon)=0$.
(a) Find an expression for the oracle linear predictor. In other words, find β_{*} such that $m(x)=\beta_{*} x$ minimizes the predictive risk.
(b) We are given n observations $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ from (1). Give an estimator $\widehat{\beta}_{n}$ for β_{*} and show that it is consistent.

Problem 2. Model Selection

Suppose we have the following data:

$$
\begin{array}{l|rrrrr}
\mathrm{X} & -2 & -1 & 0 & 1 & 2 \\
\mathrm{Y} & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Consider two regression models:

$$
\begin{array}{ll}
\text { Model 1: } & Y_{i}=\beta_{0}+\epsilon_{i} \\
\text { Model 2: } & Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
\end{array}
$$

(a) Use C_{p} to choose between these model. You may assume that $\sigma^{2}=1$. (Recall that the C_{p} penalty is $2|S| \sigma^{2} / n$.)
(b) Fit the model $Y_{i}=\beta X_{i}+\epsilon_{i}$ using the lasso. That is, find $\widehat{\beta}$ to minimize

$$
\sum_{i}\left(Y_{i}-\beta X_{i}\right)^{2}+\lambda|\beta| .
$$

Problem 3. Convex Duality

Let $X_{i} \sim \operatorname{Poisson}(\theta)$ be independent, with observations $\left\{X_{1}, X_{2}\right\}=\{5,9\}$. Consider the optimization problem

$$
\begin{aligned}
\min _{\theta} & f(\theta) \\
\text { such that } & |\theta| \leq 6
\end{aligned}
$$

where $f(\theta)=-\log f_{\theta}(5)-\log f_{\theta}(9)$ is the negative log-likelihood, where $f_{\theta}(n)=\frac{e^{-\theta} \theta^{n}}{n!}$.
(a) What is the solution to this problem?
(b) Write the Lagrangian.
(c) Derive the dual problem.
(d) State the KKT conditions.

Problem 4. Convexity and Regularization
Let Y be the random variable

$$
Y=\mu+\epsilon
$$

where $\epsilon \sim N(0,1)$ and $\mu \in \mathbb{R}$ is a constant. Define $\widehat{\mu}$ to be the value of μ that minimizes

$$
M(\mu)=(Y-\mu)^{2}+\lambda J(\mu)
$$

where $\lambda>0$. Consider three cases:

$$
\begin{aligned}
& \text { 1. } J(\mu)=I(\mu \neq 0) \\
& \text { 2. } J(\mu)=|\mu| \\
& \text { 3. } J(\mu)=\mu^{2} .
\end{aligned}
$$

(a) For which cases is $M(\mu)$ convex?
(b) Find $\widehat{\mu}$ for all three cases.

Problem 5. Mixture Models and EM
Let $\left(Z_{1}, X_{1}, Y_{1}\right), \ldots,\left(Z_{n}, X_{n}, Y_{n}\right)$ be generated as follows:

$$
\begin{aligned}
Z_{i} & \sim \operatorname{Bernoulli}(p) \\
X_{i} & \sim \operatorname{Uniform}(0,1) \\
\epsilon_{i} & \sim N\left(0, \sigma^{2}\right) \\
Y_{i} & \sim\left\{\begin{array}{rr}
5 X_{i}+\epsilon_{i} & \text { if } Z_{i}=0 \\
-5 X_{i}+\epsilon_{i} & \text { if } Z_{i}=1
\end{array}\right.
\end{aligned}
$$

(a) Assume we do not observe the Z_{i} 's or ϵ_{i} 's. Write the distribution $f(x, y)$ of X and Y as a mixture.
(b) Write down the likelihood function for p.
(c) Write down the steps for the EM algorithm.
(d) Find a consistent estimator of p that avoids using EM. Hint: find $\mathbb{E}(Y \mid X=x)$.

Problem 6. Linear Classification

Suppose that $\mathbb{P}(Y=1)=\mathbb{P}(Y=0)=\frac{1}{2}$ and

$$
\begin{aligned}
& X \mid Y=0 \sim N(0,1) \\
& X \left\lvert\, Y=1 \sim \frac{1}{2} N(-5,1)+\frac{1}{2} N(5,1)\right.
\end{aligned}
$$

(a) Find an expression for the Bayes classifier and find an expression for the Bayes risk.
(b) What linear classifier minimizes the risk and what is its risk?

Problem 7. Graphical Models

Let $X=\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)$ be a random vector distributed as

$$
X \sim N(0, \Sigma)
$$

where the covariance matrix Σ is given by

$$
\Sigma=\frac{1}{15}\left(\begin{array}{ccccc}
9 & -3 & -3 & -3 & -3 \\
-3 & 6 & 1 & 1 & 1 \\
-3 & 1 & 6 & 1 & 1 \\
-3 & 1 & 1 & 6 & 1 \\
-3 & 1 & 1 & 1 & 6
\end{array}\right) \quad \text { with inverse } \quad \Sigma^{-1}=\left(\begin{array}{ccccc}
3 & 1 & 1 & 1 & 1 \\
1 & 3 & 0 & 0 & 0 \\
1 & 0 & 3 & 0 & 0 \\
1 & 0 & 0 & 3 & 0 \\
1 & 0 & 0 & 0 & 3
\end{array}\right)
$$

(a) What is the graph for X, viewed as a graphical model?
(b) Which of the following independence statements are true?
(a) $X_{2} \perp X_{3} \mid X_{1}$
(b) $X_{3} \perp X_{4}$
(c) $X_{1} \perp X_{3} \mid X_{2}$
(d) $X_{1} \perp X_{5}$
(c) List the local Markov properties for this graphical model.
(d) Find the conditional density $p\left(X_{2} \mid X_{1}=-3\right)$.

