
10-702 Statistical Machine Learning: Assignment 3
Due Friday, February 19

Hand in to Sharon Cavlovich, GHC (Gates Hillman Center) 8215by 3:00. Use R for all
numerical computations.

1. Undirected graphical models

(a) LetX = (X1, . . . , Xd)
T where eachXj ∈ {0, 1}. Consider the log-linear model

log p(x) = β0 +
d∑

j=1

βjXj +
d∑

j<k

βjkXjXk + · · ·+
d∑

j<k<ℓ

βjkℓXjXkXℓ + · · ·+

Suppose thatβA = 0 whenever{1, 2} ⊂ A. Show that

X1 ∐ X2

∣∣∣ X3, . . . , Xd.

Remark: Log-linear models are covered in Section 17.6, however, this question does
not require knowledge of any technical details related to the log-linear models.

(b) Let X = (X1, . . . , Xd)
T be a discrete random vector, where eachXi takes values in a

finite setX , and letp(x) denote the probability mass function ofX. Recall that a mode
of the probability functionp(x) is a pointx∗ for which p(x∗) ≥ p(x), for anyx. For
eachi = 1, . . . , d, define the function

mi(xi) := max
xj ,j 6=i

p(x1, . . . , xd).

Suppose that the maximum ofmi(xi) is uniquely attained atx∗
i , i.e.,mi(x

∗
i ) > mi(xi),

for all xi ∈ X . Show thatx∗ = (x∗
1, . . . , x

∗
d) is the unique mode ofp.

(c) Let X = (X1, . . . , Xd)
T ∈ R

d be a random vector, with bivariate marginal densities
pij(xi, xj) > 0 and univariate marginal densitiespi(xi). LetG = (V, E) be a tree graph
on{1, . . . , d}, so thatG does not contain any cycles. Consider the family of functions

fm(x1, . . . , xd) =
d∏

i=1

pi(xi)
mi

∏

(i,j)∈E

pij(xi, xj),

wheremi ∈ Z are integers. Find a set of integersm1, . . . , md ∈ Z for which the
functionfm is a probability density; i.e.,fm is nonnegative and integrates to one.
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2. Exponential families

(a) Recall that a member of an exponential family of distributions has a density that can be
written in the form given in Chapter 8, Eq. (8.3). For the following distributions, verify
whether they belong to the exponential family and, if so, write them in the form given
in Eq. (8.3); otherwise, explain why they do not belong to theexponential family.

i. X ∼ Unif([0, p]), i.e.,X is uniformly distributed on the interval[0, p].

ii. Y = exp(X), whereX ∼ N (0, σ2).

iii. X is a continuous random variable on[0, 1] with density

f(x; a, b) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−1, a, b > 0, (1)

andΓ(x) =
∫ ∞

0
xt−1 exp(−x)dx is the Gamma function.

(b) Let X ∈ {1, . . . , m} be a discrete random variable with distributionp(X = j) =
pj . The entropy ofp(·) is given asH(p) = −

∑
j∈{1,...,m} pj log pj (assume0 log 0 =

0 here). Let{φ1, . . . , φd} denote a collection of functions. Consider the following
constrained optimization problem

max
p1,...,pm

H(p)

s.t. pj ≥ 0 j ∈ {1, . . . , m}
∑

j∈{1,...,m}

pj = 1

∑

j∈{1,...,m}

pjφk(j) = µk, k ∈ {1, . . . , d},

whereµk are given. Compute the Lagrangian for this constrained optimization prob-
lem, and show that the solution belongs to an exponential family of distributions.

3. Density estimation

(a) Repeat the proof of Theorem 26.18 in the class notes, but use Hoeffding’s inequality
instead of Bernstein’s inequality. You will get a weaker result. Why does Bernstein’s
inequality yield the correct rate while Hoeffding’s inequality does not?

(b) Show that if there are ties in the data then cross-validation can lead tôh = 0 in density
estimation problem. There are ties in the data ifxi = xj for somei 6= j. Can you
suggest a way to fix this problem?

Hint: considerd = 1 and use the boxcar kernel.

(c) In the class, you have seen how to estimate a density usingkernels. There is an even
simpler way to estimate a density, using regular histograms. Let X ∈ R be a random
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variable with unknown densityfX supported on[0, 1]. The regular histogram estimator
partitions the interval[0, 1] into D bins of equal length,

[0, 1] = ∪D
j=1 Bin(j) =

D⋃

j=1

[
j − 1

D
,

j

D

]
.

DenoteB(x) := Bin(j) for whichx ∈ Bin(j). The estimatêfX,D(x), based onn data
points{Xi}n

i=1, can be expressed as

f̂X,D(x) =
D

n

n∑

i=1

1I{Xi ∈ B(x)}.

Note thatf̂X,D(x) estimates the density offX on the interval
[

j−1
D

, j

D

]
by the fraction

of points that fall in theBin(j).
The only parameter that has to be chosen in the above described procedure is the num-
ber of binsD of the regular histogram. The number of binsD can be chosen using the
leave-one-out (loo) cross-validation, where the loss

L(D) =

∫

[0,1]

f̂ 2
X,D(x)dx − 2

∫

[0,1]

f̂X,D(x)fX(x)dx

is estimated using the following expression

L̂(D) =

∫

[0,1]

f̂ 2
X,D(x)dx −

2

n

n∑

i=1

f̂
(i)
X,D(Xi), (2)

wheref̂
(i)
X,D is the density estimator obtained after removing theith observation. Since

the loo cross-validation estimator (Eq. (2)) of the loss canbe computationally expensive
for a large number of samplesn, your task is to prove that the following equation

L̂(D) =
2D

n − 1
−

D(n + 1)

n − 1

D∑

j=1

(
|Bin(j)|

n

)2

(3)

gives a closed form solution for the loo cross-validation estimator. Note that|Bin(j)|
denote the number of observations that fall in the interval

[
j−1
D

, j

D

]
.

4. Numerical computation

Consider the modelXt+1 = aXt +ǫt, wherea ∈ [0, 1] is a known constant andǫ ∼ N (0, σ2)
with σ2 = 0.01 andX0 = 0. For each of the following values ofa = 0.1, 0.5, 0.95, draw
n = 500 independent trajectories of lengthT = 100 from the model. Note that a trajectory is
a vector of observationXk = (Xk,1, . . . , Xk,T ), (k = 1, . . . , n). For each of the three values
of a, you will estimate the covariance functioncov(t1, t2) = cov(Xt1 , Xt2), (1 ≤ t1, t2 ≤ T ),
using:
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(a) glasso, which is anR implementation of the procedure described in Section 17.7.1
of Chapter 17. You will need to install the R packageglasso1.

(b) the thresholding procedure:

σ̂ij(M) = σ̂ij1I

{

|σ̂ij | ≥ M

√
log T

n

}

, i 6= j,

whereσ̂ij = 1
n

∑n

k=1(Xk,i − X̄i)(Xk,j − X̄j) is the maximum likelihood estimate of
the covariance functioncov(i, j).

You will pick tuning parametersλ for glasso andM for the thresholding procedure by
maximizing the log-likelihood of the test data. For this assignment, create a test set of
n′ = 300 trajectories of the same lengthT = 100. Summarize your findings.

Finally, give an analytical expression forcov(t1, t2), which should depend only on the dif-
ference|t1 − t2|, the constanta andσ. Compute‖Σ̂ − Σ‖F , whereΣ̂ is an estimate of the
covariance andΣ consists of elementscov(t1, t2). Which estimation procedure results in a
better estimator? Why?

1http://cran.r-project.org/web/packages/glasso/index.html
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