10-702 Statistical Machine Learning: Assignment 1

Due Friday, January 22

Hand in to Sharon Cavlovich, GHC (Gates Hillman Center) 8215 by 3:00. Use R for all numerical computations.

- 1. (Review of Maximum Likelihood.) Let X_1, \ldots, X_n be a random sample where $X_i \in \{1, 2, \ldots, k\}$. Let $\theta \in [0, 1]$ and suppose that $\mathbb{P}(X_i = 1) = \theta$ and $\mathbb{P}(X_i = j) = \overline{\theta}$ for j > 1 where $\overline{\theta} = (1 \theta)/(k 1)$.
 - (a) Find the mle $\hat{\theta}$.
 - (b) Find the Fisher information.
 - (c) Find an approximate 1α confidence interval for θ .
 - (d) Find the bias and variance of $\hat{\theta}$.
 - (e) Show that $\hat{\theta}$ is consistent.
- 2. (Probability.) Let X_1, \ldots, X_n be iid and assume that $-1 \le X_i \le 1$. Also assume that X_i has mean 0.
 - (a) Use Hoeffding's inequality to show that $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$ is close to 0 with high probability.
 - (b) Show that there exists c such that

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 \xrightarrow{P} c$$

and find c.

(c) Say whether the following statements are true or false and explain why.

i.
$$\overline{X}_n = o(1)$$
.
ii. $\overline{X}_n = o_P(1)$.
iii. $\overline{X}_n = o_P(n)$.
iv. $\overline{X}_n = o_P(1/n)$.
v. $\overline{X}_n = O_P(n^{-1/2})$.
vi. $\overline{X}_n = O_P(n^{-1})$.

3. This question will help you explore the differences between Bayesian and frequentist inference. Let X_1, \ldots, X_n be a sample from a multivariate Normal distribution with mean $\mu = (\mu_1, \ldots, \mu_p)^T$ and covariance matrix equal to the identity matrix *I*. Note that each X_i is a vector of length *p*. The following facts will be helpful. If Z_1, \ldots, Z_k are independent N(0, 1) and a_1, \ldots, a_k are constants, then we say that $Y = \sum_{j=1}^{p} (Z_j + a_j)^2$ has a non-central χ^2 distribution with k degrees of freedom and noncentrality parameter $||a||^2$. The mean and variance of Y are $k + ||a||^2$ and $2k + 4||a||^2$.

- (a) Find the posterior under the improper prior $\pi(\mu) = 1$.
- (b) Let $\theta = \sum_{j=1}^{p} \mu_j^2$. Our goal is to learn θ . Find the posterior for θ . Express your answers in terms of noncentral χ^2 distributions. Find the posterior mean $\tilde{\theta}$.
- (c) The usual frequentist estimator is $\hat{\theta} = ||\overline{X}_n||^2 p/n$. Show that, for any n,

$$\frac{\mathbb{E}_{\mu}|\theta - \widetilde{\theta}|^2}{\mathbb{E}_{\mu}|\theta - \widehat{\theta}|^2} \to \infty$$

as $p \to \infty$.

- (d) Repeat the analysis with a $N(0, \tau^2 I)$ prior.
- (e) Set n = 10, p = 1000, $\mu = (0, ..., 0)^T$. Simulate (in R) data N times, with N = 1000. Draw a histogram of the Bayes estimator (with flat prior) and the frequentist estimator. (R code for this question can be found on the web site.)
- (f) Interpret your findings.
- 4. (Minimaxity and Bayes.) Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$. In what follows we use squared error loss.
 - (a) Find the mle \hat{p} . Find the bias, variance and risk (mean squared error) $R(p, \hat{p})$ of \hat{p} .
 - (b) Recall that a Beta(α, β) density has the form

$$\pi(p) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1} \propto p^{\alpha - 1} (1 - p)^{\beta - 1}.$$

Let p have a Beta(v,v) prior. Find the Bayes estimator \overline{p} . Find the bias, variance and risk $R(p,\overline{p})$ of \overline{p} .

(c) Show that $R(p,\overline{p})$ is contant (as a function of p) if v is chosen appropriately. Since \overline{p} is a Bayes estimator and has constant risk, it is the minimax estimator.