Perceptron

Machine Learning 10-601B

Seyoung Kim

Many of these slides are derived from William
Cohen. Thanks!

Perceptron

* Logistic regression is a linear classifier

 Another famous linear classifier
— The perceptron

dimengion 3

Probabilistic vs Margin-based Learning

It’s not all probabilities: many other types of analysis are used

We also want to
— capture geometric intuitions about what makes learning hard or easy
— analyze performance worst-case settings

This particular analysis is simple enough to give some insight
into “margin” learning

See: Freund & Schapire, 1998

The perceptron

[Rosenblatt, 1957]

A
instance x Compute: y; = sign(v, . X;)

A B S

N
Vv, . X
y' —_—

! -1

If mistake: v,,, = v, + y;X;

*On-line setting: data samples arrive one sample at a time

* Adversary A provides student B with an instance x

e Student B predicts a class (+1, -1) according to a simple linear

classifier: sign(v, . x)

e Adversary gives student the answer (+1,-1) for that instance
*Will do a worst-case analysis of the mistakes made by the student
over any sequence of instances from the adversary

e ... that follow a few rules

The perceptron

[Rosenblatt, 1957]

A
instance x; Compute: y; = sign(v, . X;)

A "B

A If mistake: v,., =V, + Y X;
y.

/

* Amazingly simple algorithm

* Quite effective

* Very easy to understand if you do a little
linear algebra

The perceptron

instance X

[

A "B

A

[Rosenblatt, 1957]

Compute: y; = sign(v, . X;)

A If mistake: v,., =V, + Y X;
y.

/

* Recall dot product definition:
X®V= Ex,y,.

*and intuition: «

A

A

/

* project vector x onto vector v
e dot product is the distance from the
origin to that projection

* So why does this algorithm make sense?

[
»

The perceptron

instance X

* Amazingly simple algorithm
* Quite effective

* Very easy to understand if you do a little
linear algebra «

[Rosenblatt, 1957]

N
Compute: y; = sign(v, . X;)

If mistake: v,., =V, + Y X;

*Two rules:
* Examples are not too “big”
* There is a “good” answer -- i.e. a line
that clearly separates the pos/neg
examples

v

dimengion 3

The perceptron
[Rosenblatt, 1957]

A
instance x; Compute: y; = sign(v, . X;)

»
-
<

A If mistake: v,., =V, + Y X;
y.

/

Rule 1: Radius R: A must provide v
examples “near the origin” X

25/?2
‘XH \/(Jc1 +.. +x)

Rule 2: Margin y: A must provide
examples that can be separated .
with some vector u with margin Ju:Vx, givenby A, (u* X)V, >y

y>0 and unit norm
and [Juf, =

< R

>

Vx, given by A, |x,

2

Ju:Vx, given by A, (u*x)y, >y

and [u], -1

The perceptron: after one positive x;

A
instance X ‘ Compute: y; = sign(v, . X;)

A If mistake: v,., =V, + y;X;
A

1

The perceptron: after two positive x;

A
instance x ‘ Compute: y;= Vv, . X;

u

A If mistake: v,., =V, + y;X;

The perceptron: after one pos + one neg x;

A
instance Xx; ‘ Compute: y; = sign(v, . X;)

A "B

A If mistake: v,., =V, + y;X;
y.

1

The guess v, after the two positive The guess v, after the one positive and one

examples: v,=v,+X, negative example: v,=v,-X,

A

Lemma 1: the dot product between
v, and u increases with each mistake
by at least y: i.e.,

Vi:v,-u=z Ay

v

The guess v, after the two positive The guess v, after the one positive and one
examples: v,=v,+X, negative example: v,=v,-X,

A
v

A
v

%

Y

VvV, u=(vV,+rx)u
Lemma 1: the dot product between
v, and u increases with each mistake Vi "U= (V/f ll) +.)/1'(X1' ll)
by at least y: i.e., . .

Veuz(v, u)+y

Vi:v,-u=z Ay

SO ... Ju:Vx, given by A, (uex)y, >y

vV, u= Ay

3a) The guess v, after the two 3b) The guess v, after the one positive and
2 2
positive examples: v,=v,+x, one negative example: v,=v,-x,

A
v

/2 v Jzzy

Y
Y Via Via = (Vi +yX) (V, +y X))
Lemma 2: The norm of v, grows slowly 2 2 5) 2
with each mistake, i.e., Vistlly, S{[Vell, T2Y ¥ X+ Vi [1X4]l,
0 2 2 2
VA’, Vl’Hz = A’Rz Viall, = Vil +1H Hz
2 2)
Viutlly =1Vl +R Always negative,

since it was a
2 SO ... ,
X,-Hz <K mistake

2 2
Hka2 < kR

Vx, given by A,

Lemma 1: the dot product between
v, and u increases with each mistake
by at last y: i.e.,

Viiv, -uz 4y V4,
Ay<v,-u and V/{,Hz < IR

) 2 : 2
£y <|v,ul and ||v, | =4&

Lemma 2: The norm of v, grows slowly
with each mistake, i.e.,

VA’HE < /R

) 2 2 2

#y° <[v|[,[u, and |v,[, < 4&"
...and HuH2 =1
2

#y* =|v,|, and HV/(HE < /R
£y’ < HVA’HE < AR’
Ky’ < i

2

A’<1—?

Y

Summary

« We have shown that

— If : exists a u with unit norm that has margin y on examples in

the seq (x4,¥4),(X2,Y2),. ..
— Then : the perceptron algorithm makes < R?/ y2 mistakes on the
sequence (where R >= ||x||)

— Independent of dimension of the data (!)

 We don’t know what happens if the data’s not separable

The voted perceptron

On-line to batch learning

Imagine we run the on-line perceptron and see this result.

l oguess input result

1 Vi x; X (a mistake)
2 Vi Xy 4/ (correct!)
3 Vi X3 \/

4 Vi xy; X (a mistake)
5) Va X5 \/

6 Va X6 \/

7 V2 X7 Vv

8 Vo Xg X

9 Va Xg 4

10 vy X109 X

Which v; should we use?
Maybe the /ast one?

Here it's never gotten any

test cases right!
(Experimentally, the classifiers
move around a lot.)

Maybe the “best one™?

But we “improved” it with
later mistakes...

P(error in x) Z P(error on x|picked v,)P(picked v})

Z:_

I72A

T nu m

Imagine we run the on-line perceptron and see this result.
¢ guess input result

1 Va X X (a mistake) 1. Pick a Vi at random
o i | | ct!) accqrdlng to m,/m, the
. Vi X2 \// (correct! fraction of examples it
3 Vi X3 vV was used for.
:L "'1 X4 ‘X/ (a mistake) 2. Predict using the v, you
) V2 X5 \// just picked.
6 V2 X6 v 3. Better: use a
T Vo X~ \/ . L

2 i g deterministic
8 Vo Xs X approximation to this: a
9 Va Xg V4 sum of the v, ‘s, weighted
10 Vi X110 X

by m,/m

From Freund & Schapire, 1998: Classifying

digits with VP
20 random (unnorm) ——
last (unnorm) -~
avg (unnorm) -
N vote
B5F 0 -
5
1)
3 10 [
}—
5 L
0 L s 2 a2l
0 1 10

Epoch

