Probability Overview

Machine Learning 10-601B

Many of these slides are derived from Tom
Mitchell, William Cohen, Eric Xing. Thanks!



Course Overview

Course website: http://www.cs.cmu.edu/~10601b

— Lecture notes, recitation notes will be posted on this website

All homework/project submissions should be uploaded to
autolab folder

Piazza for discussion



What do you need to know now?

 There are pre-requisites (see the course website), though not
strictly enforced

e But... you should know how to do math and how to program:
— Calculus (multivariate)
— Probability/statistics
— Linear algebra (matrices and vectors)
— Programming:

* You will implement some of the algorithms and apply them to
datasets

* Assignments will be mostly in Matlab and/or Octave (play with
that now if you want)

e All CMU students can download Matlab free of charge from CMU
software website. Octave is open-source software.

* We may review these things but we will not teach them



What do you need to know now?

* In the first recitation, TA will review linear algebra and
probability
e There is a “self-assessment” test on the class website

— Won’t be graded
— Everyone should take it to calibrate your prior knowledge



Grading

Six homework assignments (60%)

Programming assignment (Matlab), written homework
Should be submitted

* by 10:30am of the due date. (Two late days. 50% of the full grade for one-day
late homework, 0 afterwards.)

* To the autolab
— Autolab website: https://autolab.cs.cmu.edu/courses/10601b-f15/assessments

Project (20%)

Project proposal: Oct 22

Mid-report: Nov 24

Final report: Dec 17

Should be submitted by 10:30am of due date to autolab folder

No late days!! 50% of the full grade for one-day late submission, 0 afterwards

Exam (20%): Nov 19 in class
Pass/Fail: you should obtain at least B- to pass the course.

Auditing: Should turn in at least 3 homework.



Collaboration Policy

Discussion with fellow classmates are allowed, but only to
understand better, not to save work.

So:

— no notes of the discussion are allowed to share

— you should acknowledge who you got help from/did help in your
homework (see the course website)

This policy was also used previously in 10-601 taught by Roni
Rosenfeld, William Cohen, and Eric Xing.

We will take academic honesty seriously -- we will fail students.



Recitations and Office Hours

e Instructor’s office hour: 10:30-11:30am Thursday

e TA office hours: location to be announced. Until then, the 8t"
floor common area
— 5-6pm Monday
— 1lam-12pm Tuesday
— 5-6pm Wednesday

e Recitations: 7:30-8:30pm Thursday, location to be announced



Main Topics for 10-601

Supervised learning
— Classifiers
* Naive Bayes, logistic regression, etc.
* Extremely useful on many real tasks
— Non-linear classifiers
* Neural nets, decision trees, nearest-neighbor classifiers
— Regression

Unsupervised and semi-supervised learning
— k-means, mixtures, SVD/PCA, ...

Graphical models
— Bayes networks and Markov networks
— Hidden Markov models

Comparing and evaluating classifiers

— Overfitting, cross validation, bias-variance trade off
— Learning theory



Machine Learning:

Study of algorithms that

* improve their performance P
e« at some task T

 with experience E

well-defined learning task: <P,T,E>



Learning to Predict Emergency C-
Sections

[Sims et al., 2000]

Data:

Patient 103 time=1 - Patientl03 tima=2 »  PutientlO3 {ime=n
Ags: 23 Age: 23 Ags:23 9714 patient records,
FirstPiegnancy: no FirstPregnancy: no FirstPregnancy: no .
Anemia: no Anemia: no Anemia: no eaCh Wlth 2 1 5 features
Diabetes: no Diabstes: YES Diabstes: no
PreviousPiematureBirth: o PreviousPiematuieBirth: no PreviousPiematuieBirth: no
Ultrasound: ? Ultiasound: abnormal Ultiasound: ?
Elactive C-Seaction: ? Elactive C-Saction: mo Elactive C-Saction: no
Emeigency C-Section: ? Emeaigency C-Section: ? Emergency C-Section: Yes

One of 18 learned rules:

If No previous vaginal delivery, and
Abnormal 2nd Trimester Ultrasound, and
Malpresentation at admission

Then Probability of Emergency C-Section is 0.6

Over training data: 26/41 = .63,
Over test data: 12/20 = .60



Learning to detect objects in images

(Prof. H. Schneiderman)

Example training images
for each orientation




Learning to classify text documents

» All About The Company

Global Activities
Corporate Structure
TOTAL's Story
Upstream Strategy
Downstream Strategy
Chemicals Strategy
TOTAL Foundation
Homepage

all about the
company

Our energy exploration, production, and distribution

an the globe, with activities in more than 100

operation
countries.

At TOTAL, we draw our greatest strength from our
fast-growing oil and gas reserves. Our strategic emphasis
on natural gas provides a strong position in a rapidly
expanding market.

Our expanding refining and marketing operations in Asia
and the Mediterranean Rim complement already solid
positions in Europe, Africa, and the U.S.

Our growing specialty chemicals sector adds balance and
profit to the core energy business.

» Company home page
VS

Personal home page
VS

University home page

VS
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person is thinking about, based

Learn to classify the word a
on fMRI brain activity



Machine Learning - Practice

0.3s 0.ds
Data: F\ﬂ\ )In\»\ [\
Al
Patientl03 yjazy - Patientl03 e Patientl03 yimen \‘ VW Lik} TV W L& L] h
Age: 23 Age: 23 Age:23
FirstPrsgnancy: no FirtPragnancy: no FnslP egrancy: n
Anemia: no Anemia: no
Diabetes: no Diabstes: YES
n no avio emaf @Birth: n L L
Unasound: 7 - Unnam s e e C h Re CO NI tl O N
Elective C-Section: ? Elective C-Section: no Elective C-Section: no

Emeigency C-Saction: ? Emeigancy C-Saction: ? Emergency - Section: Yes

One of 18 learned rules:

If No previous vaginal delivery, and
Abnormal 2nd Trimester Ultrasound, and
Malpresentation at admission

Then Probability of Emergency C-Section is 0.6

Over training data: 26/41 = .63,
Over test data: 12/20 = .60

Mining Databases

Control learning

Text analysis

Peter H. van Oppen ,
Mr. van Oppen has served as
since its acquisition by Interpoint in 1994 and a director of ADIC since 1986. Until its

acquisition by Crane Co. in October 1996, Mr. ¥an Oppen served as [N
% “Pror to 1985, Mitan
Oppen worked as a at Price Waterhouse LLP and at Bain & Company
in Boston and London. He has additional experience in medical electronics and venture
capital. Mr. van Oppen also serves as a _ and Spacelabs
Medical, Inc.. He holds a B.A. from Whitman College and an M.B.A. from Harvard
Business School, where he was a Baker Scholar.

Objet recognltlon

Supervised learning
Bayesian networks
Hidden Markov models
Unsupervised clustering

Reinforcement learning



Economics 0 iencé . .
and omputer scien Animal learning
L. (Cognitive science,
Organizational Psychology
Behavior ‘ ‘ Neuroscience)
Machine learning 4.

Adaptive Control

“




Machine Learning in Computer Science

* Machine learning is already the preferred approach to
— Speech recognition, Natural language processing
— Computer vision
— Medical outcomes analysis
— Robot control

All software apps.

e This ML niche is growing (why?)



Machine Learning in Computer Science

* Machine learning is already the preferred approach to
— Speech recognition, Natural language processing
— Computer vision
— Medical outcomes analysis
— Robot control

All software apps.

* This ML niche is growing
— Improved machine learning algorithms
— Increased data capture, networking, new sensors
— Demand for self-customization to user, environment



Probability Overview

Events

— discrete random variables, continuous random variables, compound
events

Axioms of probability
— What defines a reasonable theory of uncertainty

Independent events
Conditional probabilities
Independence, Conditional independence

Bayes rule and beliefs



Random Variables

Informally, A is a random variable if
— A denotes something about which we are uncertain
— perhaps the outcome of a randomized experiment

Examples
— A =True if a randomly drawn person from our class is female
— A =The hometown of a randomly drawn person from our class

— A =True if two randomly drawn persons from our class have same
birthday

Define P(A) as “the fraction of possible worlds in which A is true” or

“the fractio,r) of times A holds, in repeated runs of the random
experiment

— the set of possible worlds is called the sample space, S



A little formalism

More formally, we have

 asample space S (e.g., set of students in our class)
— aka the set of possible worlds

 arandom variable is a function defined over the sample space
— Gender:S>{m, f}
— Height: S 2 Reals
 aneventisasubsetofS
— e.g., the subset of S for which Gender=f
— e.g., the subset of S for which (Gender=m) AND (eyeColor=Dblue)

 We are often interested in probabilities of specific events and
of specific events conditioned on other specific events



The Axioms of Probability

 Assume binary random variables A and B.
— 0<=P(A)<=1
— P(A=true) + P(A=false) =1
— P(A or B) = P(A) + P(B) — P(A and B)

[di Finetti 1931]:

when gambling based on “uncertainty formalism A” you can be exploited by an
opponent

iff

your uncertainty formalism A violates these axioms



Visualizing Probability Axioms

Sample space of all
possible worlds

—
/

Its areais 1

Worlds in which A

is true

Worlds in which A is False (~A)

P(A) = Area of
reddish oval



Interpreting the axioms

* 0<=PA)<=1
* P(Aor~A)=P(True) =1
« P(AorB)=P(A)+ P(B)-P(AandB)

The area of A can’ t get any
smaller than O

And a zero area would mean
no world could ever have A
true




Interpreting the axioms

e 0<=PA)<=1
e P(Aor~A)=P(True)=1
« P(AorB)=P(A)+P(B)-P(AandB)

The area of A can’t get any
bigger than 1

And an area of 1 would mean
all worlds will have A true




Interpreting the axioms

0<=P(A)<=1
P(A or ~A) = P(True) =1
P(A or B) = P(A) + P(B) - P(A and B)

Simple addition and subtraction

P(A and B)

L




Interpreting the axioms

e 0<=PA)<=1
e P(Aor~A)=P(True)=1
« P(AorB)=P(A)+P(B)-P(Aand B)

Monotonicity: if A is a subset of B, then P(A) <= P(B)

Proof:

* Asubset of B=>» B=A+Cfor C=B-A

* Aand C are disjoint = P(B) = P(A or C)=P(A) + P(C)
* P(C)>=0

« So P(B) >= P(A)



Interpreting the axioms

0<=P(A)<=1
P(A or ~A) = P(True) =1
P(A or B) = P(A) + P(B) - P(A and B)

Theorem: P(~A) =1 - P(A)

Proof:
* P(Aor~A)=P(True)=1

>N

* Aand ~A are disjoint = P(A or ~A)=P(A) + P(~A)

S P(A) +P(~A) =1

....then solve for P(~A)




Another useful theorem

e 0<=P(A)<=1, P(True) =1, P(False) =0,
e P(AorB)=P(A)+P(B)-P(AandB)

=>» P(A) = P(A and B) + P(A and ~B)
A= [Aand (B or~B)] = [(A and B) or (A and ~B)]

P(A) = P(A and B) + P(A and ~B) — P((A and B) and (A and ~B))
P(A) = P(A and B) + P(A and ~B) — P(A and B and A and ~B)



Elementary Probability in Pictures

 P(A)=P(A and B) + P(A and ~B)
Aan(\j B




Multivalued Discrete Random Variables

* Suppose A can take on more than 2 values

 Aisarandom variable with arity k if it can take on exactly one
value out of {v,,v,, ... v, }
— Example: A={1,2,3....,20}: good for 20-sided dice games
— Notation: let’s write the event AHasValueOfv as “A=v”

* Thus...
P(A=v,AnA=v,)=01ti=j

AA=vvA=v,v..vA=v)=1



Elementary Probability in Pictures

iP(A=vj)=1

A=2

A=5

A=4

A=1




Definition of Conditional Probability




Definition of Conditional Probability

Corollary: The Chain Rule

P(A~B)=P(A|B) P(B)
P(A~BAC)=P(A|BAC)P(B|C) P(C)



Conditional Probability in Pictures

picture: P(B=true|A=2)

A=2

A=5

A=4

A=1




Independent Events

Definition: two events A and B are independent if P(A and
B)=P(A)*P(B)

Intuition: knowing A tells us nothing about the value of B (and
vice versa)

From chain rule
P(A~B)=P(A|B) P(B) = P(A)P(B)
->P(A|B) =P(A)

You frequently need to assume the independence of
something to solve any learning problem.



Continuous Random Variables

* The discrete case: sum over all EP(A | ) 1

values of Ais 1

* The continuous case: infinitely

many values for A and the f/;(x)d“r:l

integral is 1
f(x) is a probability density function (pdf)
1. 0<=P(A)<=1

2. P(True) =
3. P(AorB)=P(A)+P(B)- P(Aand B) also.... VX, fp()() >0



Continuous Random Variables

Gaussian probability density with parameters
-mean u
- standard deviation o

1 2
(z—p)
f(il') = —e 202
o\ 2T
| | M | M | v v | 1 1
10 t I
H=0, 07=02, w— 4
! H=0, 0%= 10, w— -
e | | =0, 0?=50, =]
H=-2, 0?=05, ==
06
04
]
02
- -4
Q0
1 1 1 1 1 1 1




Bayes Rule

* |et’s write two expressions for P(A * B)

\

P(A~B)=P(A|B) P(B)
P(A~B)=P(B|A)P(A)

P(A[B) P(B) = P(B]A)P(A)



P(B|A) * P(A)
P(A|B) = Bayes’ rule
P(B)

we call P(A) the “prior”
Bayes, Thomas (1763) An essay towards

and P(A|B) the “posterior” solving a problem in the doctrine of chances.
Philosophical Transactions of the Royal

Society of London, 53:370-418

...by no means merely a curious speculation in the doctrine of chances, but
necessary to be solved in order to a sure foundation for all our reasonings
concerning past facts, and what is likely to be hereafter.... necessary to be
considered by any that would give a clear account of the strength of analogical
or inductive reasoning...



Other Forms of Bayes Rule

P(B| A)P(A)

F41B) - P(B| A)P(4)+ P(B |~ A)P(~ 4)
P(B|ANX)P(ANX)

AAE~X)= P(B A X)




Applying Bayes Rule

i P(B| A)P(A)
~ P(BIA)P(A)+ P(B I~ A)P(~ A)

A =you have the flu, B =you just coughed

P(AB)

Assume:
P(A) =0.05

Also assume the following information is known to you
P(B|A) =0.80
P(B| ~A)=0.2

what is P(flu | cough) = P(A|B)?



Bayes Rule in Machine Learning

 D:data (evidence)

* 0:unknown quantities
— e.g., model parameters, predictions

likelihood: How likely
is the observed data
under the particular

unknown quantity 6 Prior belief on the

posterior belief on the

unknown quantity | ' unknown quantity
after you see data D P(D | H)P(H) Before you see data D
P(O1D) =

P(D)



You should know

Events

— discrete random variables, continuous random variables, compound
events

Axioms of probability
— What defines a reasonable theory of uncertainty

Independent events
Conditional probabilities
Bayes rule and beliefs



