Probability Estimation
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Seyoung Kim

Many of these slides are derived from Tom
Mitchell, William Cohen, Eric Xing. Thanks!



Overview

* Joint probability distribution
— A functional mapping f: X->Y via probability distribution

* Probability estimation
— Maximum likelihood estimation

— Maximum a priori estimation



What does all this have to do with function
approximation for f: X->Y?



gender
Female
Joint Probability
Distribution
Male

hours_worked wealth

v0:40.5-

v1:40.5+

v0:40.5-

v1:40.5+

poor
rich
poor
rich
poor
rich
poor

rich

0.253122 [

0.0245895 |}
0.0421768 |
0.0116293 |

0331313
0.0971295 |

0.134106 |G

0.105933 |

Once you have the joint
distribution, you can ask for the
probability of any logical expression
involving your attribute




Using the Joint
Distribution

P(Poor, Male) = 0.4654

gender hours_worked wealth

Female v0:40.5- poor 0253122 |G
rich  0.0245895 ||}
v1:40.5+ poor 0.0421768 [}
rich  0.0116293 |
ale  v0:405  poor  0.231313 NG
rich  0.0971295 |
v1:40.5+ poor  0.134106 NN
rich 0105933 |
P(E)y= ) P(row)

rows matching £

P(A) =P(A~B)+P(A"~B)




Using the Joint
Distribution

P(Poor) = 0.7604

gender hours_worked wealth

Female v0:405-  poor_ 0.253122 NNEEGGGE
rich  0.0245895 ||}
" vi405+  poor 0.0421765 Nl
rich  0.0116293 |
ale  v0:405  poor  0.231313 NG
rich  0.0971295 |
v1:40.5+ poor  0.134106 NN
rich 0105933 |
P(E) = 2 P(row)

rows matching £




gender hours_worked wealth

Female v0:40.5- poor 0253122 |G
Inference with rich  0.0245895 |
H v1:40.5+ oor 0.0421768
the Joint P !
rich  0.0116293 |
Male  v0:40.5- poor 0.331313 |G
rich  0.0971295 |
v1:40.5+ poor 0.134106 |G
rich  0.105933 |
P(row)

P(El A Ez) __ Fows matching £ and E,

P(E1|E2)= P(E)

E P(row)

rows matching £,




Inference with
the Joint

P(El |E2)=

gender hours_worked wealth

(Female v0:40.5-  poor 0253122 NG

rich  0.0245895 ||}
" vi405+  poor 0.0421765 Nl

rich  0.0116293 |
ale v0:40.5- r 0331313

rich  0.0971295 |

t v1:40.5+ poor  0.134106 —

rich 0105933 |

P(row)
P(El A Ez) __ Fows matching £, and E,

P(E,) E P(row)

rows matching £,

P(Male | Poor) =0.4654 / 0.7604 = 0.612




gender hours_worked wealth
- Female v0:40.5- poor
Learning and e
the Joint v1:40.5+ :::r
DiStribUtion Male v0:40.5- poor
rich
v1:40.5+ poor
rich

0.253122 [

0.0245895 |}
0.0421768 ||}
0.0116293 ||

0331313 I
0.0971295 |

0.134106 |G

0.105933 N

Suppose we want to learn the function f: <G, H> > W

Equivalently, P(W | G, H)

Solution: learn joint distribution from data, calculate P(W | G, H)

e.g., P(W=rich | G = female, H=40.5-) =

[A. Moore]




Density Estimation

* OQOur Joint Distribution learner is our first example of
something called Density Estimation

* A Density Estimator learns a mapping from a set of attributes
values to a Probability

Input N
Attributes - > Probability

Copyright © Andrew W. Moore




Density Estimation

 Compare it against the two other major kinds of models:

Input N
Attributes - » Probability

Input o
Attributes Prednc‘ugn of
categorical output or class
One of a few discrete values
Input ‘ o
Attributes : Prediction of

real-valued output

Copyright © Andrew W. Moore



Density Estimation =» Classification

Input
Attributes
Class

0>

»
>

(x,y)

Input .
Attributes Predlctlpn of
X categorical output
One of y1, ...., yk
To classify x . R .
1. Use your estimator to compute P(x,y1), ...., P(x,yk) Bmary case:.
2. Return the class y* with the highest predicted probability predict POS if
P(x, ypos)>0.5

FAN FAN A FAN
Ideally is correct with P(y*| x) = P(x,y*)/(P(x,y1) + .... + P(x,yk))

Copyright © Andrew W. Moore



Classification vs Density Estimation

Classification Density Estimation




Classification vs density estimation




Modeling Uncertainty with Probabilities

Y is a Boolean-valued random variable if

— Y denotes an event,
— there is uncertainty as to whether Y occurs.

More examples
— Y = You wake up tomorrow with a headache
— Y =The US president in 2023 will be male
— Y =there is intelligent life elsewhere in our galaxy
— Y =the 1,000,000,000,000% digit of it is 7
— Y =1 woke up today with a headache

Define P(Y|X) as “the fraction of possible worlds in which Y is true, given
X”



sounds like the solution to learning
F: XY,
or P(Y | X).

Are we done?



Your first consulting job
"

m A billionaire from the suburbs of Seattle asks
you a question:

He says: | have thumbtack, if | flip it, what’s the
probability it will fall with the nail up?

You say: Please flip it a few times:

Ne \ &

You say: The probability is:
He says: Why???

You say: Because...

[C. Guestrin]



Thumbtack — Binomial Distribution

= P(Heads) = 0, P(Tails) = 1-0
{ D1, D2, D3, D4, D5}

Flips produce data set D with ay heads and aq tails

D=

e Flips are independent, identically distributed 1’s and 0’s (Bernoulli)

e oy and ap are counts that sum these outcomes (Binomial)

P(D|0) = P(au,ar|d) = 65 (1 — §)° (O‘H +0‘T)

Ay

[C. Guestrin]



Maximum Likelihood Estimation
" J
m Data: Observed set D of oy Heads and o Tails
m Hypothesis: Binomial distributior roi) = piax, al) = 61 - g)= (a,,;aT)
m Learning 0 is an optimization problem :
What's the objective function?

m MLE: Choose 6 that maximizes the probability of
observed data:

) = arg m@ax P(D | 0)

= arg m@ax In P(D | 0)

[C. Guestrin]



Maximum Likelihood Estimate for ©
"

0 = arg m@ax In P(D | 0)
= arg m@ax INOH(1 — 6)T

m Set derivative to zero: ;_19 InP(D | 0) = 0
(0

[C. Guestrin]



" JEE
DE ~

0

arg mgax

arg mgax

m Set derivative to zero:

In P(D | 6)
INnOH (1 — 6)°T

d
— InP(D|0) =0
~o InP(D | 0)

[C. Guestrin]




How many flips do | need?
"

—~ aH
OviLE =

o+ ar

[C. Guestrin]



Issues with MLE estimate

| bought a loaded 20-faced die (d20) on EBay...but it didn’t come with any
specs. How can | find out how it behaves?

Frequency

1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Face Shown

1. Collect some data (20 rolls)
2. Estimate P(i)=CountOf(rolls of i)/CountOf(any roll)



Issues with MLE estimate

| bought a loaded d20 on EBay...but it didn’t come with any

specs. How can | find out how it behaves?

Frequency

1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Face Shown

P(1)=0
P(2)=0
P(3)=0
P(4)=0.1

P(19)=0.25
P(20)=0.2

But: Do | really think it’s impossible to roll a 1,2 or 37



A better solution

| bought a loaded d20 on EBay...but it didn’t come with any specs.
How can | find out how it behaves?

Frequency

3 LD

LA TR ECAE T A A

1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Face Shown

0. Imagine some data (20 rolls, each i shows up 1x)

1. Collect some data (20 rolls)
2. Estimate P(i)



A better solution?

Frequency P(1)=1/40
6 =
c { P(2)=1/40
4 | P(3)=1/40
3 ] ml P(4)=(2+1)/40
2 : e L ] mli
MAP = 1":”T:’T:"u*_:"iiiiui:'iiiii:'r':':iiii:u_'
maximum NIEIRIEN ARN RININES RINRNRRAR N AR P(19)=(5+1)/40
. . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
a posteriori Face Shown P(20)=(4+1)/40=1/8
estimate
A ount 1)+1
P(@) = CountOf (i) 0.2 vs. 0.125 —really

CountOf (ANY) + CountOf (IMAGINED) different! Maybe | should

“imagine” less data?



Bayesian Learning

" J
m Use Bayes rule:
P(D |60)P(6
peo D) = PRIOPO)

P(D)

m Or equivalently:

PO |D) x P(D|6)P(6)

[C. Guestrin]



Beta prior distribution — P(0)
0,3;{-1(1 . 0);’37“—1

B (.B.H ’ .BT)

P(O) = ~ Beta(By, B1)

8 Betal2,2) Betal3,2) . Betal30 20)
14 -
15 9
12
. 4
2 2 =2
g 08 3 33
[ = D
m o6 o o
4
04 U5
1 2 '
|
4 a 04 a 4 a
B el lom parameln Jom B el lom

[C. Guestrin]



Beta prior distribution — P(0)
0,'3][—1(1 L 0)}'3’[‘—1

P(0) =

~ Beta(By, B1)

m Likelihood function: P(D | 6) = 6°1(1 — )7 O‘H+O‘T)
m Posterior: P(0 | D) « P(D|0)P(0)

[C. Guestrin]



Posterior distribution
" A
~ m Prior: Beta(8y, 87)

m Data: oy heads and o tails

m Posterior distribution:

P(0 | D) ~ Beta(By + am, Br + aT)

Bata{1,1)

- Beta{2,2) Beta{3,2) g Beta(30,20)
14
15 5
08 12
- 4
208 2 2 2
a a 08 a &3
< ] ] F 4
D o4 @ o6 = = 2
04 05
02 1
02
0 R 0 _ 0 _ 0= - -
o 0.2 04 08 08 1 0 0.2 04 08 08 1 0 0.2 04 0e 08 1 0 0.2 04 06 08 1
paramelnr valos paramelnr valos paramelnr valos paramelnr valos

[C. Guestrin]




Beta(30,20)

MAP for Beta distribution

"

9,{3[1+a1[—1(1 . 0).[3_1,4_@,1,_1
BBy + am, Br + ar)

ramaeter value

P9 | D) = ~ Beta(By—+ayy, Br+or)

m MAP: use most likely parameter:

f = arg max PO | D) =

o, + P, -1
o, + P, —1+o,.+ 6 -1

m Beta prior equivalent to extra thumbtack flips
m As N — oo, prior is “forgotten”
m But, for small sample size, prior is important! [C. Guestrin]



Conjugate priors

 P(06)and P(0|D) have the same form
Eg. 1 Coin flip problem

Likelihood is ™ Binomial
P(D | 6) = 0°H (1 — 0)°T
If prior is Beta distribution,
pfu—1(1 — 9)Pr-1
B(By,Br)
Then posterior is Beta distribution
P(0|D) ~ Beta(By + am, Br + ar)

P(0) = ~ Beta(By, Br)

For Binomial, conjugate prior is Beta distribution.
[A. Singh]



Lejeune Dirichlet

Dirichlet distribution

 number of heads in N flips of a two-sided coin
— follows a binomial distribution
— Beta is a good prior (conjugate prior for binomial)

Johann Peter Gustav Lejeune Dirichlet

N . . Born 13 February 1805
« what it s not two-sided, but k-sided? Diren, Fench Ene
e o Ayl
— follows a multinomial distribution N e
— Dirichlet distribution is the conjugate prior o onely P o
Institutions University of Berlin
University of Breslau
University of Géttingen
K 1 Alma mater University of Bonn
l -_ Doctoral advisor Simeon Pois;on
P(el, 92’ 9K H 9 Doctoral students io::i:z;og:ernstein

Leopold Kronecker
) Rudolf Lipschitz
Carl Wilhelm Borchargt

Known for Dirichlet function
Dirichlet eta function



Conjugate priors
 P(0)and P(0|D) have the same form

Eg. 2 Dice roll problem (6 outcomes instead of 2) N
Likelihood is ~ Multinomial(0 = {0,, O0,, ..., O,})
P(D|0) =6071052...0,*
If prior is Dirichlet distribution,

1
[, 0,
B(B1,..-,08)

Then posterior is Dirichlet distribution

P(0|D) ~ Dirichlet(81 + a1,..., 8 + o)

P(0) =

~ Dirichlet(81, ..., )

For Multinomial, conjugate prior is Dirichlet distribution.
[A. Singh]



Estimating Parameters

 Maximum Likelihood Estimate (MLE): choose 0 that maximiz?D
probability of observed data

AN

0 = arg m@ax P(D | 0)

e Maximum a Posteriori (MAP) estimate: choose 0 that is most
probable given prior probability and the data

# = argmax P(0|D)

0
ramgs = D102




Expected values

Given discrete random variable X, the expected value of X,
written E[X] is

EX]=) zP(X =z)

TEX

We also can talk about the expected value of functions of X

E[f(X)]=) f(z)P(X =xz)

TeX



Covariance

Given two discrete r.v.” s X and Y, we define the
covariance of Xand Y as

Cov(X,Y) = E|(X — E(X))(Y — E(Y))]

e.g., X=gender, Y=playsFootball
or X=gender, Y=leftHanded

Remember: E\X| = ZxP(X = z)

TEX



You should know

* Density estimation and its relation to classification

e Estimating parameters from data
— maximum likelihood estimates
— maximum a posteriori estimates
— distributions — binomial, Beta, Dirichlet, ...
— conjugate priors



