Probability Estimation

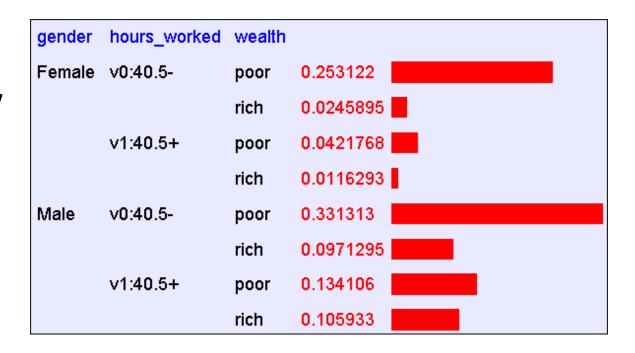
Machine Learning 10-601B
Seyoung Kim

Overview

- Joint probability distribution
 - A functional mapping f: X->Y via probability distribution
- Probability estimation
 - Maximum likelihood estimation
 - Maximum a priori estimation

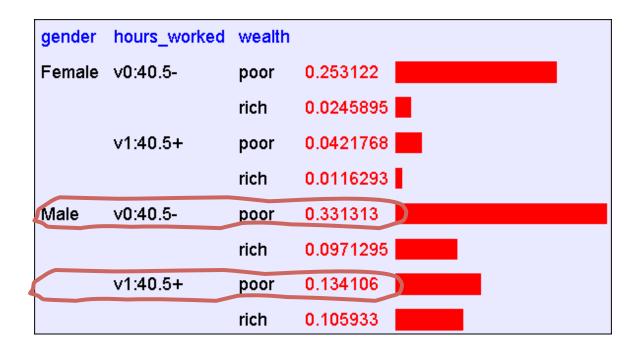
What does all this have to do with function approximation for f: X->Y?

Joint Probability Distribution



Once you have the joint distribution, you can ask for the probability of any logical expression involving your attribute

Using the Joint Distribution

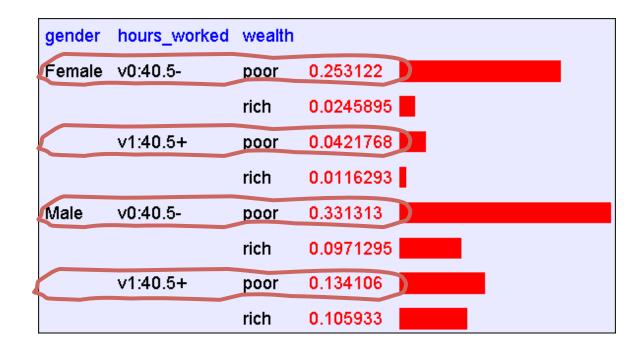


P(Poor, Male) = 0.4654

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

$$P(A) = P(A \land B) + P(A \land {}^{\sim}B)$$

Using the Joint Distribution



$$P(Poor) = 0.7604$$

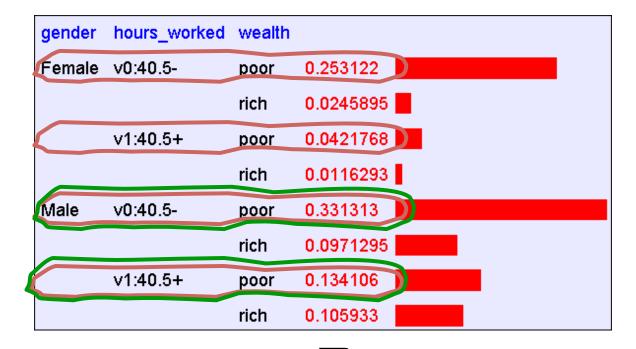
$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Inference with the Joint

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

$$P(E_1 | E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum_{\text{rows matching } E_1 \text{ and } E_2}}{\sum_{\text{rows matching } E_2}} P(\text{row})$$

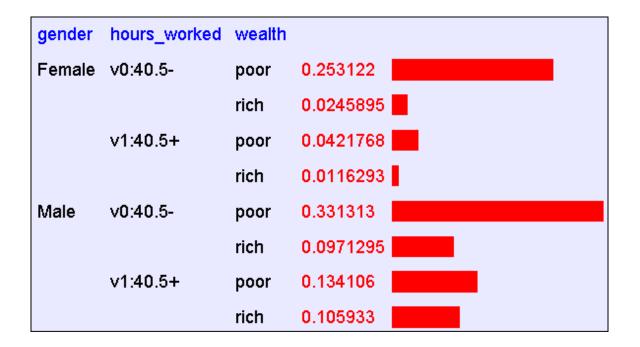
Inference with the Joint



$$P(E_1 | E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum_{\text{rows matching } E_1 \text{ and } E_2}}{\sum_{\text{rows matching } E_2}} P(\text{row})$$

 $P(Male \mid Poor) = 0.4654 / 0.7604 = 0.612$

Learning and the Joint Distribution



Suppose we want to learn the function f: <G, H> → W

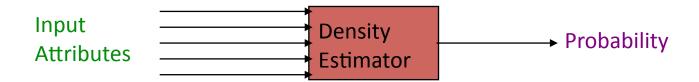
Equivalently, P(W | G, H)

Solution: learn joint distribution from data, calculate P(W | G, H)

e.g., P(W=rich | G = female, H = 40.5-) =

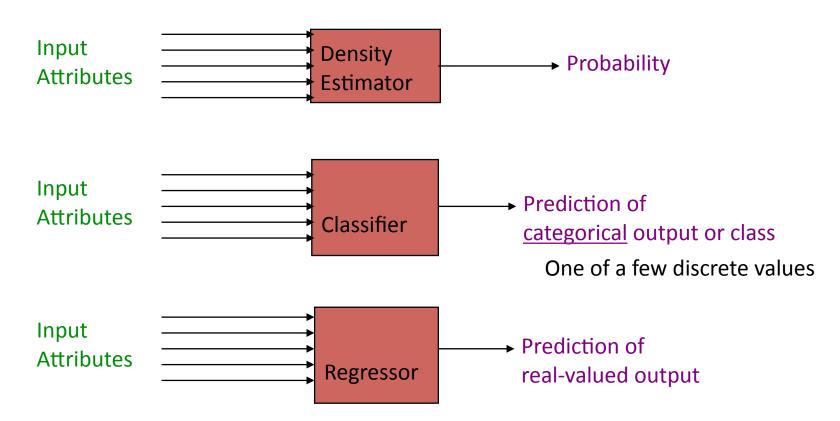
Density Estimation

- Our Joint Distribution learner is our first example of something called <u>Density Estimation</u>
- A Density Estimator learns a mapping from a set of attributes values to a Probability

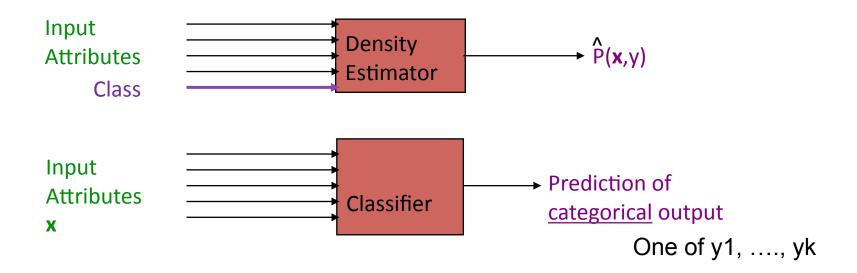


Density Estimation

Compare it against the two other major kinds of models:



Density Estimation Classification



To classify x

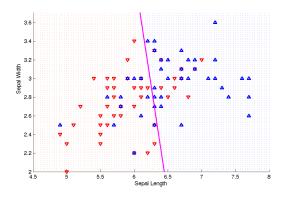
- 1. Use your estimator to compute $\hat{P}(x,y1)$,, $\hat{P}(x,yk)$
- 2. Return the class y* with the highest predicted probability

Ideally is correct with
$$P(y^* | \mathbf{x}) = P(\mathbf{x}, y^*)/(P(\mathbf{x}, y1) + + P(\mathbf{x}, yk))$$

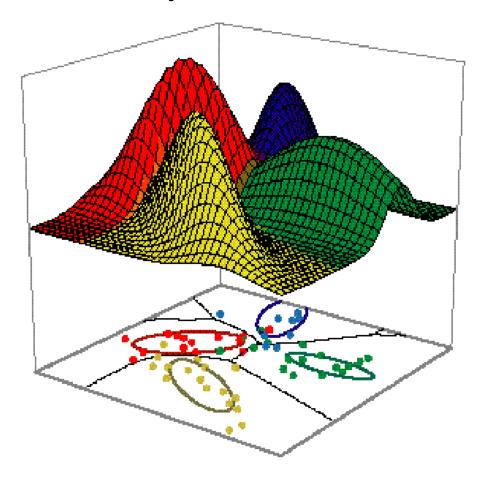
Binary case: predict POS if $P(\mathbf{x}, \mathbf{y}_{pos}) > 0.5$

Classification vs Density Estimation

Classification



Density Estimation



Classification vs density estimation

Modeling Uncertainty with Probabilities

- Y is a Boolean-valued <u>random variable</u> if
 - Y denotes an <u>event</u>,
 - there is uncertainty as to whether Y occurs.
- More examples
 - Y = You wake up tomorrow with a headache
 - Y = The US president in 2023 will be male
 - Y = there is intelligent life elsewhere in our galaxy
 - Y = the 1,000,000,000,000th digit of π is 7
 - Y = I woke up today with a headache
- Define P(Y|X) as "the fraction of possible worlds in which Y is true, given X"

sounds like the solution to learning F: X → Y, or P(Y | X).

Are we done?

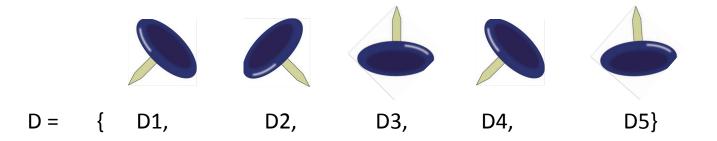
Your first consulting job

- A billionaire from the suburbs of Seattle asks you a question:
 - He says: I have thumbtack, if I flip it, what's the probability it will fall with the nail up?
 - ☐ You say: Please flip it a few times:

- □ You say: The probability is:
- ■He says: Why???
- ☐ You say: Because...

Thumbtack – Binomial Distribution

■ P(Heads) = θ , P(Tails) = 1- θ



Flips produce data set D with α_H heads and α_T tails

- Flips are independent, identically distributed 1's and 0's (Bernoulli)
- α_H and α_T are counts that sum these outcomes (Binomial)

$$P(D|\theta) = P(\alpha_H, \alpha_T|\theta) = \theta^{\alpha_H} (1-\theta)^{\alpha_T} \begin{pmatrix} \alpha_H + \alpha_T \\ \alpha_H \end{pmatrix}$$

[C. Guestrin]

Maximum Likelihood Estimation

- Data: Observed set D of α_H Heads and α_T Tails
- **Hypothesis:** Binomial distributior $P(D|\theta) = P(\alpha_H, \alpha_T|\theta) = \theta^{\alpha_H}(1-\theta)^{\alpha_T} \begin{pmatrix} \alpha_H + \alpha_T \\ \alpha_H \end{pmatrix}$
- Learning θ is an optimization problem
 - □ What's the objective function?
- MLE: Choose θ that maximizes the probability of observed data:

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

$$= \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

Maximum Likelihood Estimate for Θ

$$\widehat{\theta} = \arg\max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

$$= \arg\max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Set derivative to zero:

$$rac{d}{d heta}$$
 In $P(\mathcal{D} \mid heta) = 0$

Set derivative to zero:

$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = 0$$

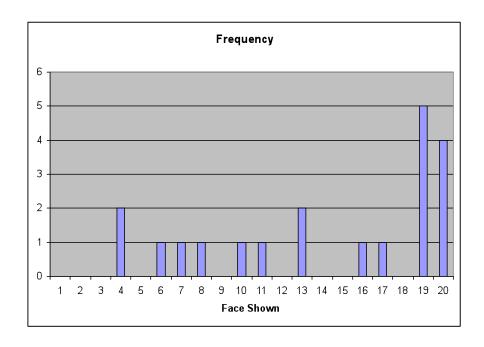
$$\widehat{ heta} = rg \max_{ heta} \ \ln P(\mathcal{D} \mid heta)$$
 $= rg \max_{ heta} \ \ln heta^{lpha_H} (1 - heta)^{lpha_T}$

How many flips do I need?

$$\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

Issues with MLE estimate

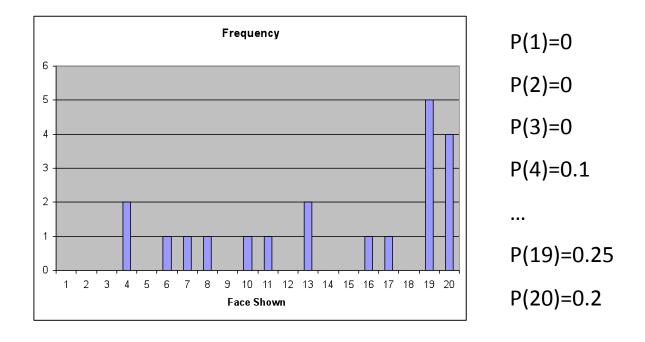
I bought a loaded 20-faced die (d20) on EBay...but it didn't come with any specs. How can I find out how it behaves?



- 1. Collect some data (20 rolls)
- 2. Estimate P(i)=CountOf(rolls of i)/CountOf(any roll)

Issues with MLE estimate

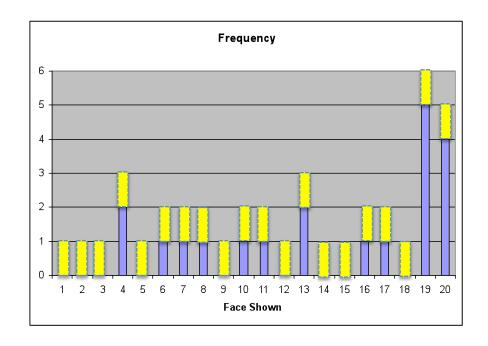
I bought a loaded d20 on EBay...but it didn't come with any specs. How can I find out how it behaves?



But: Do I really think it's *impossible* to roll a 1,2 or 3?

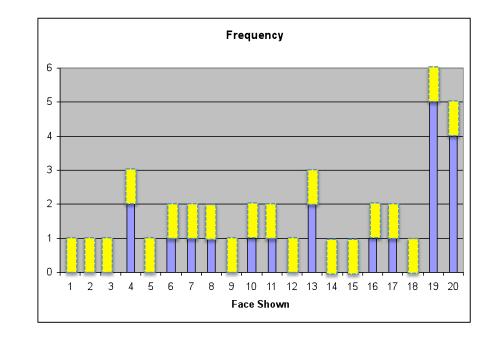
A better solution

I bought a loaded d20 on EBay...but it didn't come with any specs. How can I find out how it behaves?



- 0. Imagine some data (20 rolls, each i shows up 1x)
- 1. Collect some data (20 rolls)
- 2. Estimate P(i)

A better solution?



$$P(1)=1/40$$

$$P(2)=1/40$$

$$P(3)=1/40$$

$$P(4)=(2+1)/40$$

..

$$P(19)=(5+1)/40$$

$$\hat{P}(i) = \frac{CountOf(i) + 1}{CountOf(ANY) + CountOf(IMAGINED)}$$

MAP =

<u>maximum</u>

<u>estimate</u>

<u>a posteriori</u>

0.2 vs. 0.125 – really different! Maybe I should "imagine" less data?

Bayesian Learning

Use Bayes rule:

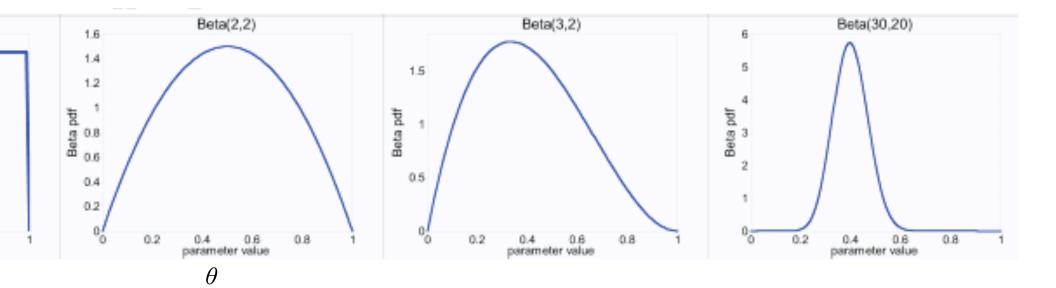
$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

Or equivalently:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$



Beta prior distribution – $P(\theta)$

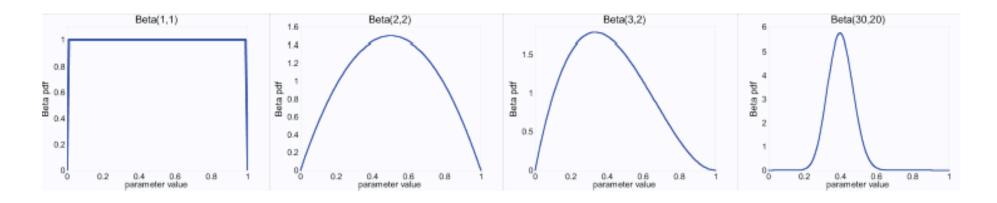
$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

- Likelihood function: $P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 \theta)^{\alpha_T} {\alpha_H + \alpha_T \choose \alpha_H}$ Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$

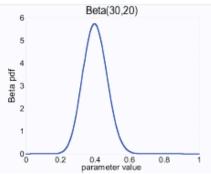
Posterior distribution

- Prior: $Beta(\beta_H, \beta_T)$
- Data: α_H heads and α_T tails
- Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$



MAP for Beta distribution



$$P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

MAP: use most likely parameter:

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D}) = \frac{\alpha_H + \beta_H - 1}{\alpha_H + \beta_H - 1 + \alpha_T + \beta_T - 1}$$

- Beta prior equivalent to extra thumbtack flips
- As $N \to \infty$, prior is "forgotten"
- But, for small sample size, prior is important!

[C. Guestrin]

Conjugate priors

• $P(\theta)$ and $P(\theta \mid D)$ have the same form

Eg. 1 Coin flip problem

Likelihood is ~ Binomial

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Then posterior is Beta distribution

$$P(\theta|D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

For Binomial, conjugate prior is Beta distribution.

Dirichlet distribution

- number of heads in N flips of a two-sided coin
 - follows a binomial distribution
 - Beta is a good prior (conjugate prior for binomial)
- what it's not two-sided, but k-sided?
 - follows a multinomial distribution
 - Dirichlet distribution is the conjugate prior

$$P(\theta_1, \theta_2, ... \theta_K) = \frac{1}{B(\alpha)} \prod_i^K \theta_i^{(\alpha_1 - 1)}$$

Conjugate priors

- $P(\theta)$ and $P(\theta|D)$ have the same form
- Eg. 2 Dice roll problem (6 outcomes instead of 2)

Likelihood is \sim Multinomial($\theta = \{\theta_1, \theta_2, ..., \theta_k\}$)

$$P(\mathcal{D} \mid \theta) = \theta_1^{\alpha_1} \theta_2^{\alpha_2} \dots \theta_k^{\alpha_k}$$

If prior is Dirichlet distribution,

$$P(\theta) = \frac{\prod_{i=1}^{k} \theta_i^{\beta_i - 1}}{B(\beta_1, \dots, \beta_k)} \sim \text{Dirichlet}(\beta_1, \dots, \beta_k)$$

Then posterior is Dirichlet distribution

$$P(\theta|D) \sim \mathsf{Dirichlet}(\beta_1 + \alpha_1, \dots, \beta_k + \alpha_k)$$

For Multinomial, conjugate prior is Dirichlet distribution.

Estimating Parameters

• Maximum Likelihood Estimate (MLE): choose θ that maximiz \mathcal{D} probability of observed data

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

• Maximum a Posteriori (MAP) estimate: choose θ that is most probable given prior probability and the data

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D})$$

$$= \arg\max_{\theta} = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

Expected values

Given discrete random variable X, the expected value of X, written E[X] is

$$E[X] = \sum_{x \in \mathcal{X}} x P(X = x)$$

We also can talk about the expected value of functions of X

$$E[f(X)] = \sum_{x \in \mathcal{X}} f(x)P(X = x)$$

Covariance

Given two discrete r.v.'s X and Y, we define the covariance of X and Y as

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

e.g., X=gender, Y=playsFootball

or X=gender, Y=leftHanded

Remember:
$$E[X] = \sum_{x \in \mathcal{X}} x P(X = x)$$

You should know

- Density estimation and its relation to classification
- Estimating parameters from data
 - maximum likelihood estimates
 - maximum a posteriori estimates
 - distributions binomial, Beta, Dirichlet, ...
 - conjugate priors