Clustering: Mixture Models

Machine Learning 10-601B

Seyoung Kim

Many of these slides are derived from Tom Mitchell, Ziv-
Bar Joseph, and Eric Xing. Thanks!



Problem with K-means
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Hard Assignment of Samples into Three
Clusters

Cluster1 Cluster2 Cluster 3

Individual 1 1 0 0
Individual 2 0 1 0
Individual 3 0 1 0
Individual 4 1 0 0
Individual 5

Individual 6

Individual 7

Individual 8

Individual 9

Individual 10



Probabilistic Soft-Clustering of Samples into
Three Clusters

Probability of Cluster1 Cluster2 Cluster3 Sum
Individual 1 0.1 0.4 0.5 1
Individual 2 0.8 0.1 0.1 1
Individual 3 0.7 0.2 0.1 1
Individual 4 0.10 0.05 0.85 1
Individual 5 1
Individual 6 1
Individual 7 1
Individual 8 1
Individual 9 1
Individual 10 . 1

* Each sample can be assigned to more than one clusters with a certain probability.

* For each sample, the probabilities for all clusters should sum to 1. (i.e., each row should
sum to 1.)

*Each cluster is explained by a cluster center variable (i.e., cluster mean)



Probability Model for Data P(X)?
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Mixture Model

* A density model p(x) may be multi-modal.

Multi-model-how do-we model this?
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Mixture Model

 We may be able to model it as a mixture of uni-modal
distributions (e.g., Gaussians).

* Each mode may correspond to a different sub-population
(e.g., male and female).
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Learning Mixture Models from Data

Given data generated from multi-modal distribution, can we
find a representation of the multi-model distribution as a
mixture of uni-modal distributions?




Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:
p(x,) =Y, p(x,lz, =kpz, =k)

=D N(x, 1.2,
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Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:
p(x,) = ), p(x,.2, =k)p(z, = k)

=D N(x, 1.2,

A S

) mixture proportion
mixture component

* This probability model describes how each data point x, can
be generated
— Step 1: Flip a K-sided die (with probability s, for the k-th side) to
select a cluster ¢
— Step 2: Generate the values of the data point from N(u.,2 )



Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:
p(x,) = ), p(x,.2, =k)p(z, = k)

=D N(x, 1.2,

A\ N

mixture proportion mixture component

* Parameters for K clusters: 6 ={u, .2, 7, .k =1,...K}



Learning mixture models

* Latent variable model: data are only partially observed!
— X;: observed sample data

— z,={z!.... 2K} : Unobserved cluster labels (each element 0 or 1, only one of them is
1)

* MLE estimate

— What if all data (x; z,) are observed?
* Maximize the data log likelihood for (x; z;) based on p(x; z))
e Easy to optimize!

— In practice, only x;’s are observed
* Maximize the data log likelihood for (x;) based on p(x;)
 Difficult to optimize!

— Maximize the expected data log likelihood for (x; z) based on p(x; z
* Expectation-Maximization (EM) algorithm



Learning mixture models: fully observed data

* Infully observed iid settings, assuming the cluster labels z/s
were observed, the log likelihood decomposes into a sum of
local terms.

[.(:D) = ¥ log p(x,.z, 10)(= Y log p(z, 16 )+ B log p(x, |z,.6)

Dependson T, Dependson g, 2,

— The optimization problems for u, ,2, and for s, are decoupled, and a
closed-form solution for MLE exists.



MLE for GMM with fully observed data

If we are doing MLE for completely observed data

Data log-likelihood
I(6;D) = logn p(z,.x,) =log| | p(z, |m)p(x, |z,,u.0)

Elognnk Elog | N(xn;uk,o)Z5
Ezzklogﬂk Ezznzz(x ) +C

Ty vnp = argmax [ (6; D), Z )
Zﬁxﬂ

k
nZn

MLE

Wy ypp = Argmax /1(6;D) B Aak,MLE =
O anp = argmax, /(0;D)

What if we do not know z,?



Learning mixture models

In fully observed iid settings, assuming the cluster labels z/s were
observed, the log likelihood decomposes into a sum of local terms.

[.(:D) = ¥ log p(x, .z, 16)

With latent variables for cluster labels

| (6;D) = Elogp(x 19)

= Elogzp(xn,z 10) = Elog

— all the parameters become coupled together via marginalization

Are they equally difficult? Dependson T,  Dependson p 2,

» p(z10)p



Theory underlying EM

Recall that according to MLE, we intend to learn the model
parameter that would have maximized the likelihood of the data.

But we do not observe z, so computing

.(6:D) = Dlog Y, p(x,.216) = Ylog Y p(z16)p(x, |2,0)

n Z
is difficult!
Optimizing the log-likelihood for MLE is difficult!

What shall we do?



Complete vs. Expected Complete Log
Likelihoods

* The complete log likelihood:

/(0;D) = 1ong<z x,) =log[ [ p(z, | 0)p(x, | 2, 1.0)

—Zloank +Zlog | V(x5 G)Zk
—ZZ log, - ZZ nz(z(x -w) +C

* The expected omplete Iog likelihoad

Depends on T, Depends on u, ,>,



Complete vs. Expected Complete Log
Likelihoods

 The complete log likelihood:
/(8;D) = long<z x,) =log] [ p(z, |m)p(x, | 2,, u,0)

—ZlogHﬂk +Zlog 3 N(x W, O)" k
_ZZ logrm, - ZZZ —(x uk) +C

 The expected complete log likelihood

<Ic(9;x,z)> Z<logp(z |J'E) (ZX)+Zlogp(X |z, u, )>

p(z|x)

_ZZ< >10gnk——zz< (X, - )T Z(x, — )+ logls, [ +C )

c EM optlmlzes the expected complete log likelihood



EM Algorithm
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K-Means Clustering Algorithm

Find the cluster Re-as|5|gn ’
means samples x/'s to
clusters

, 1 ,
Mk:azﬂﬁi

2
= argmax, Il x, — u, I

Iterate until
convergence




The Expectation-Maximization (EM) Algorithm

* Start:
— "Guess" the centroid y, and covariance 2, of each of the K clusters
* Loop
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The Expectation-Maximization (EM) Algorithm

A “soft” k-means

E step:
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Compare: K-means

The EM algorithm for mixtures of Gaussians is like a "soft
version" of the K-means algorithm.

In the K-means “E-step” we do hard assignment:

() (NT 5 -1(F) (1)
Zn = arg m/?X(Xn — Uy ) z:k (Xn — Uy

In the K-means “M-step” we update the means as the
weighted sum of the data, but now the weights are O or 1:

ard _ 2O X,
Y, 6" k)




Expected Complete Log Likelihood Lower-bounds
Complete Log Likelihood

* For any distribution q(z) define expected complete log likelihood:
(L(0;x, z) Eq(z|x 6)log p(x,z | 6)

— Does maximizing this surrogate yield a maximizer of the likelihood?
e Jensen’s inequality

1(0;x)=1log p(x|6)
~log 3 p(x.2|0)

) P210)
g(z|x)

=log Y g(z

=3 q(z]x)log q(z;'z X? = 1(0:x)=(L.(0:x,2)) +H




Closing notes

Convergence
Seed choice
Quality of cluster

How many clusters



Convergence

* Why should the K-means algorithm ever reach a fixed point?

— -- A state in which clusters don’t change.

 K-means is a special case of a general procedure the
Expectation Maximization (EM) algorithm.
— Both are known to converge.
— Number of iterations could be large.



Seed Choice

Results can vary based on random seed selection.
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Some seeds can result in convergence to sub-optimal clusterings.

— Select good seeds using a heuristic (e.g., doc least similar to any existing
mean)

— Try out multiple starting points (very important!!!)
— Initialize with the results of another method.



What Is A Good Clustering?

* Internal criterion: A good clustering will produce high quality
clusters in which:
— the intra-class (that is, intra-cluster) similarity is high
— the inter-class similarity is low

— The measured quality of a clustering depends on both the obj
representation and the similarity measure used

* External criteria for clustering quality

— Quality measured by its ability to discover some or all of the hidden
patterns or latent classes in gold standard data

— Assesses a clustering with respect to ground truth



How Many Clusters?

Number of clusters K is given

— Partition n docs into predetermined number of clusters

Finding the “right” number of clusters is part of the problem

— Given objs, partition into an “appropriate” number of subsets.

— E.g., for query results - ideal value of K not known up front - though Ul
may impose limits.

Tradeoff between having more clusters (better focus within
each cluster) and having too many clusters

Nonparametric Bayesian Inference



Cross validation

We can also use cross validation to determine the correct number of
classes

Recall that GMMs is a generative model. We can compute the likelihood of
the held-out data to determine which model (number of clusters) is more

accurate n_(k
p(x,---x, |6’)=H Ep(xj IC=Dw,
j=1\ i=1

LR:-176.276561 LR:-177.452112
T T
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Cross validation

LR:-175.744144

LR:-171.571450




Gaussian
mixture
clustering
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Clustering methods: Comparison

Hierarchical K-means GMM
Running naively, O(N?) fastest (each fast (each
time iteration 1s iteration 1s
linear) linear)
Assumptions | requires a strong strongest
similarity / assumptions assumptions
distance measure
Input none K (number of | K (number of
parameters clusters) clusters)
Clusters subjective (only a |exactly K exactly K
tree 1s returned) | clusters clusters




What you should know about Mixture Models

e Gaussian mixture models
— Probabilistic extension of K-means for soft-clustering
— EM algorithm for learning by assuming data are only partially observed
e Cluster labels are treated as the unobserved part of data

 EM algorithm for learning from partly unobserved data
— MLE of O = arg m@axlog P(datal0)
— EMestimate: 0= arg m@ax EZ|X’9[Iog P(X, Z|0)]
 Where X is observed part of data, Z is unobserved



