Linear Regression
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Many of these slides are derived from Tom
Mitchell. Thanks!



Regression

e So far, we've been interested in learning P(Y|X) where Y has
discrete values (called ‘classification’)

 WhatifY is continuous? (called ‘regression’)
— predict weight from gender, height, age, ...

— predict Google stock price today from Google, Yahoo, MSFT prices
yesterday

— predict each pixel intensity in robot’s current camera image, from
previous image and previous action



Supervised Learning

* Wish to learn f:X—2Y, given observations for both X and Y in
training data - Supervised learning
— Classification: Y is discrete
— Regression: Y is continuous



Regression

Wish to learn f:X—=2Y, where Y is real, given {<x,y1>...<xN,yN>}

Approach:

1. choose some parameterized form for P(Y|X; )
(6 is the vector of parameters)

2. derive learning algorithm as MLE or MAP estimate for 0



1. Choose parameterized form for P(Y|X; O)

Assume Y is some deterministic f(X), plus random noise €
y=f(x)+e€  whee €~ N(0,0)
Therefore Y is a random variable that follows the distribution
p(y|z) = N(f(z),0)
The expected value of y for any given x is Ep(y|x)[y]=f(x)



1. Choose parameterized form for P(Y|X; O)

X
e Assume Y is some deterministic f(X), plus random noise €

y:f(CU)—I-E where ENN(O,O')

* Assume a linear function for f(x)

CU) = Wy + Z w;x;
p(y|z) = N(wo + szxz,



1. Choose parameterized form for P(Y|X; O)

X
Assume a linear function for f(x)

T) = wy+ Z W;T;
p(y|z) = N(wo + szwz,

By lylz] = wo + Z Wil
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2. How can We Learn Linear Regression Parameters?
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 Given the linear regression model

p(y|z) = N (wo +szw@,

— Notation: to make our parameters explicit, let’s write using vector
notation R

W = 0

* Given a training dataset of N samples {<x’,y/>...<xV,yV>}
— yl:a univariate real value for the /-th sample
—  x: avector of J features for the /-th sample

e How can we learn W from the training data?



2. How can We Learn Linear Regression Parameters?

py|z) = N(wo +szxz,

* How can we learn W from the training data (), x/), where /=1,
...N for N samples? Maximum Conditional Likelihood
Estimate!

_ I
WyerLe = arg mM%XHP(y |33 ; W)

1%,% _ I Nt W
MCLE argmuz;le: np(y|x, )

where

1 —flz;W
p(ylz; W) = e

\V 2mo?




2. How can We Learn Linear Regression Parameters?

e Learn Maximum Conditional Likelihood Estimate

W _ I Nt W
MCLE argmmz;le: np(y |~"Ua )

where
1 1,y—f(z;W)\2
p(ylz W) = ——— e 20 o)
(ylz; W) —

* Thus, the conditional log-likelihood is given as

S inp(yles W) = 3 |in-—— -2 —f(x;W)%)
l -

L] 2.7770'2 2 O

Constant with respect to W



2. How can We Learn Linear Regression Parameters?

e Learn Maximum Conditional Likelihood Estimate

W _ I Nt W
MCLE argmvgx; HP(ZU |5177 )

where
1 1,y—f(z;W)\2
p(ylz W) = ——— e 20 o)
(ylz; W) 3

* Thus, the conditional log-likelihood is given as

S np(ya; W) = 3 fin-——— - —f(x;W)%)
l -

I 2]77(72 2 O

B ol el 2
WwyerLe = arg mvévile: (y' — f(="; W))




2. How can We Learn Linear Regression Parameters?

e Learn Maximum Conditional Likelihood Estimate

_ T 2
WwyerLe = arg max zz: (y' — f(z"; W))
o . [ [. W 2
=argmin » (y — f(z;W))
[
e Maximum conditional likelihood estimate is also called least
squared-error estimate

 MLE provides a probabilistic interpretation of least squared-
error estimate



Vector/Matrix Representation

* Rewrite the linear regression model for training data using
vector/matrix representation

y=XW+eg

Augmented input feature

corresponding to w, Jinput features

( yl \ xll x; \ (a)o\
g : »
y — % X g- W: :1
N|= N N |2
\Y ) A A5 ) "




2. How can We Learn Linear Regression Parameters?

e Learn Maximum Conditional Likelihood Estimate

_ T 2
WwueLe = arg mw?}le: (y' — f(z"s W))

= arg min Z(yl — f(iUlQ W))2

|14
[

= arg min (y - XW)' (y - XW)

Re-write using vector representations of N samples in data
J input features
(1)
y

1 X .. x;\
X =

=
|
N samples

N

V) qox )




2. How can We Learn Linear Regression Parameters?

e Learn Maximum Conditional Likelihood Estimate

Wicrp = arg min (y - XW)! (y — XW)

Re-write using vector representations of N samples in data
J input features

(') 1 x' .. x)

=
|

N samples
|

\yN/ \1 xy ... xy/

O (G- XW)(r - XW)=0
ow




2. How can We Learn Linear Regression Parameters?

e Learn Maximum Conditional Likelihood Estimate

0 (-XW)(y—XW)
SW

=2XT(y—XW) =0

Wicie = (XTX)_ley



Comments on Training Linear Regression
Models

* Least squared error method
T -1 T
Woce =X X)) X'y

— A ssingle equation for computing the estimate (i.e., a closed-form
solution for MLE estimate)

— When the dataset is extremely large, computing X’X and inverting it
can be costly especially for streaming data

* Alternatively, gradient descent method
— Works well on large datasets



Training Linear Regression with Gradient Des/c/;/eritifg/

Learn Maximum Conditional Likelihood Estimate

_ : . ) 2
WyecrLe = arg min ;(y f(z; W))

Can we derive gradient descent rule for training?

ie.,
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Gradient Descent:

Batch gradient: use error Ep(w) over entire training set D

Do until satisfied:
8w0 o 8wn

1. Compute the gradient VEp(w) =

2. Update the vector of parameters: W <— W — nV Ep(w)

Stochastic gradient: use errorE;(w) over single examples deD
Do until satisfied:

1. Choose (with replacement) a random training example d € D
aEd(W) 8Ed(W>
owy  Ow,

3. Update the vector of parameters: w <— w — nV Ey(w)

2. Compute the gradient just for d: VE;(w) =

Stochastic approximates Batch arbitrarily closelyas 1) — 0
Stochastic can be much faster when D is very large
Intermediate approach: use error over subsets of D



Training Linear Regression with Gradient Descent

e Learn Maximum Conditional Likelihood Estimate
_ : _ . 2
WarcLe = arg min ;(y f(z; W))

« (Can we derive gradient descent rule for training?

03 (y azi(x W) 22 y— Flo W) Oy —gﬂ()j:;W))
Of (x; W)

Andif f(x) = wy+ Z WL -

Gradient descent rule: w; <— w; +n Z(yl — f(ml; W)) xl




Example: Prostate Cancer

* |sthere correlation between the level of prostate-specific antigen
and a number of clinical measures in men who were about to
receive a radical prostatectomy for 97 men

— X : clnical measures
* |og cancer volume (lcavol)
* |og prostate weight (lweight)
e age
* log of the amount of benign prostatic hyperplasia (Ilbph)
* seminal vesicle invasion (svi)
* |og of capsular penetration (Icp)
* Gleason score (gleason)
* percent of Gleason scores 4 or 5 (pgg45)
— v: level of prostate-specific antigen

Hastie/Tibshirani/Friedman Elements of statistical
learning



Example: Prostate Cancer

Correlation between y and each input feature x,
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— X : clnical measures
* |log cancer volume (Icavol)
* |log prostate weight (lweight)
e age
* log of the amount of benign prostatic hyperplasia (Ibph)
e seminal vesicle invasion (svi)
* |log of capsular penetration (lcp)
* Gleason score (gleason)
» percent of Gleason scores 4 or 5 (pgg45)



Example: Prostate Cancer

* Estimated regression coefficients

X W
Term Coeflicient
Intercept 2.46
lcavol 0.68
lweight 0.26
age —0.14
1bph 0.21
svi 0.31
lcp —0.29
gleason —0.02
pgg4b 0.27
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Comments on Least Squared Error Estimate

Wyee =(X'X)" X"y

In many problems of practical interest, N>J (i.e., the number of data points
N is larger than the dimensionality J of the input space and the matrix X is
of full column rank.)

When N>J, it is easy to verify that X'X is necessarily invertible.

The assumption that X’X is invertible implies that it is positive definite,
thus at the critical point we have found is a minimum.

What if X has less than full column rank? N<J
— MAP estimate



How about MAP instead of MLE estimate?

* Let’s assume Gaussian prior: each w; ~ N(0, o) for i=1,....J

p(w;) = = exp (—(wi — O)2>

A 2020

— Note we do not place a prior on w, Why?

— We assume a model without an intercept (W=(w,, ..., w,)) after
mean-centering data y and X. Why? See Hastie/Tibshirani/
Friedman Ex 3.5 page 95.

* MAP estimate is given as

argmaxIn P(W | X,y) = argmaxIn(X,y |W) +ln@)



How about MAP instead of MLE estimate?

* Let’s assume Gaussian prior: each w, ~ N(0, 6,°)

p(w) = exp (_<wz~2;go>2>

* Then MAP estimate is given as

[ yvL.
W—a,rgmax —27‘02 Z Wi+ Z In P(Y'| X", W)
w;, €W [etraining data
= argmm s Z w?+ Z (y' — f (" W))?
0 w; €W [€training data

=arg min (y - XW)'(y — XW) + (1/20,?) WIW



How about MAP instead of MLE estimate?

e Then MAP estimate is
arg min (y - XW) ' (y - XW) + (1/20,?) WI'W

O (- XW)T (- XW)+ (1/20,2) WTW =0
SW

Invertible, even if N<J

Wi =( "X + _1XTy

20,

Small 6,% value means strong prior belief



MAP Estimate and Regularization

* MAP estimation
arg min (y - XW)' (y - XW) + (1/20,?) W'W

with prior w, ~ N(0, 6,°)

 More generally, this can be viewed as a regularization

arg min (y - XW) ' (y — XW) + AL WIW

with regularization parameter A

Equivalently ||y - XW||,°+ A ||W]|,?




Generalizing Linear Regression.. -

plylz) = N(f(z),0)

e E.g., assume f(x) is linear function of x

QZ' = Wy + Z Ww;x;
p(y|z) = N(wo +Zwﬂ:z,

* f(x)islinearinx/s and also linear in w/'s



Generalizing Linear Regression: Nonlinear Basis
Function

* linearinw)/s
— Widely-used assumption because of the mathematical
convenience and easy estimation

* linearinx/s
— We can relax this by choosing arbitrary non-linear basis
function @(x,)
* So far, we assumed @, (x)= x
* We can also use @, (x)= (1, x x* x%)



Generalizing Linear Regression: Nonlinear Basis - -
Function Tty °

plylz) = N(f(z),0)

e E.g., assume f(x) is linear function of x
f(z) =) widi(z)

p(ylz) = N (Z w;gi(), U)

1



Generalizing Linear Regression: Nonlinear Basis
Function

e Different basis functions can be used

e Polynomial q)j(x) = x/1

e Radial basis functions ¢ ;(x) = exp| —

(x— “j)z
25s°

\)

» Sigmoidal ¢, (x) :O(X_ U, ]

e Splines, Fourier, Wavelets, etc



Regression — What you should know

Under general assumption  p(y|z; W) = N(f(z; W), o)

MLE corresponds to minimizing Sum of Squared prediction Errors (SSE)
MAP estimate minimizes SSE plus sum of squared weights

3. Again, learning is an optimization problem once we choose our objective
function

*  MLE: maximize data likelihood
«  MAP: maximize posterior probability, P(W | data)

4. Again, we can use gradient descent as a general learning algorithm
 aslong as our objective f is differentiable wrt W

5. Nothing we said here required that f(x) be linear in x -- just linear in W
Gradient descent is just one algorithm — linear algebra solutions too



Logistic Regression as Regression

1

P(Y =1|X =< Xq1,..Xp >) =
" 14+ exp(wg + >, w; X;)

implies

_exp(wo + X w; X;)
14+ exp(wg + X, w; X;)

implies
P(Y = 0]|X)
PlY = 1:X) = exp(wo + > w; X;)
— 1 linear classification
/ rule!
implies P(Y = 0[X)
N — — Y.
Py =1jx) W0t 2wk



