Linear Regression

Machine Learning 10-601
Seyoung Kim

Regression

- So far, we've been interested in learning P(Y|X) where Y has discrete values (called 'classification')
- What if Y is continuous? (called 'regression')
 - predict weight from gender, height, age, ...
 - predict Google stock price today from Google, Yahoo, MSFT prices yesterday
 - predict each pixel intensity in robot's current camera image, from previous image and previous action

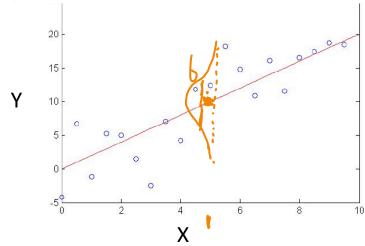
Supervised Learning

- Wish to learn f:X→Y, given observations for both X and Y in training data - Supervised learning
 - Classification: Y is discrete
 - Regression: Y is continuous

Regression

- Wish to learn f:X \rightarrow Y, where Y is real, given $\{\langle x^1, y^1 \rangle ... \langle x^N, y^N \rangle\}$
- Approach:
 - 1. choose some parameterized form for $P(Y|X; \theta)$ (θ is the vector of parameters)
 - 2. derive learning algorithm as MLE or MAP estimate for θ

1. Choose parameterized form for $P(Y|X;\theta)$



Assume Y is some deterministic f(X), plus random noise ε

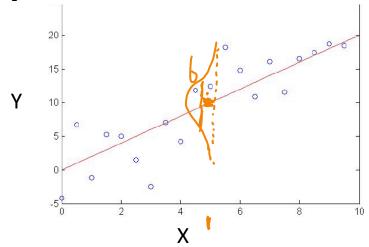
$$y=f(x)+\epsilon$$
 where $\epsilon \sim N(0,\sigma)$

Therefore Y is a random variable that follows the distribution

$$p(y|x) = N(f(x), \sigma)$$

• The expected value of y for any given x is $E_{p(y|x)}[y] = f(x)$

1. Choose parameterized form for $P(Y|X;\theta)$



Assume Y is some deterministic f(X), plus random noise ε

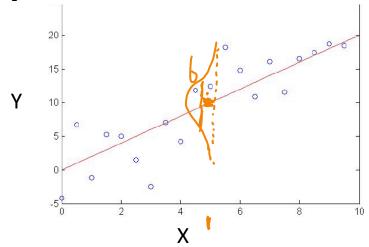
$$y=f(x)+\epsilon$$
 where $\epsilon \sim N(0,\sigma)$

• Assume a linear function for f(x)

$$f(x) = w_0 + \sum_i w_i x_i$$

 $p(y|x) = N(w_0 + \sum_i w_i x_i, \sigma)$

1. Choose parameterized form for $P(Y|X;\theta)$



• Assume a linear function for f(x)

$$f(x) = w_0 + \sum_i w_i x_i$$
$$p(y|x) = N(w_0 + \sum_i w_i x_i, \sigma)$$
$$E_{p(x,y)}[y|x] = w_0 + \sum_i w_i x_i$$

Given the linear regression model

$$p(y|x) = N(w_0 + \sum_i w_i x_i, \sigma)$$

Notation: to make our parameters explicit, let's write using vector notation

$$\left\{egin{array}{c} oldsymbol{\omega}_0 \ oldsymbol{\omega}_1 \ oldsymbol{\omega}_J \ oldsymbol{\omega}_J \end{array}
ight.$$

- Given a training dataset of N samples $\{\langle x^1, y^1 \rangle ... \langle x^N, y^N \rangle\}$
 - y^l : a univariate real value for the l-th sample
 - x^l : a vector of J features for the l-th sample
- How can we learn W from the training data?

$$p(y|x) = N(w_0 + \sum_i w_i x_i, \sigma)$$

• How can we learn W from the training data (y^l, x^l) , where l=1, ...N for N samples? Maximum Conditional Likelihood Estimate!

$$W_{MCLE} = \arg \max_{W} \prod_{l} p(y^{l}|x^{l}, W)$$
 $W_{MCLE} = \arg \max_{W} \sum_{l} \ln p(y^{l}|x^{l}, W)$

where

$$p(y|x;W) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{y-f(x;W)}{\sigma})^2}$$

$$W_{MCLE} = \arg\max_{W} \sum_{l} \ln p(y^{l}|x^{l}, W)$$

where

$$p(y|x;W) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{y-f(x;W)}{\sigma})^2}$$

Thus, the conditional log-likelihood is given as

$$\sum_{l} \ln p(y^{l}|x^{l};W) = \sum_{l} \left[\ln \frac{1}{\sqrt{2\pi\sigma^{2}}} - \frac{1}{2} \left(\frac{y^{l} - f(x^{l};W)}{\sigma} \right)^{2} \right]$$

Constant with respect to W

$$W_{MCLE} = \arg \max_{W} \sum_{l} \ln p(y^{l}|x^{l}, W)$$

where

$$p(y|x;W) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{y-f(x;W)}{\sigma})^2}$$

Thus, the conditional log-likelihood is given as

$$\sum_{l} \ln p(y^{l}|x^{l};W) = \sum_{l} \left[\ln \frac{1}{\sqrt{2\pi\sigma^{2}}} - \frac{1}{2} \left(\frac{y^{l} - f(x^{l};W)}{\sigma} \right)^{2} \right]$$

$$W_{MCLE} = \arg\max_{W} \sum_{l} -(y^{l} - f(x^{l}; W))^{2}$$

$$W_{MCLE} = \arg \max_{W} \sum_{l} -(y^l - f(x^l; W))^2$$
$$= \arg \min_{W} \sum_{l} (y^l - f(x^l; W))^2$$

- Maximum conditional likelihood estimate is also called least squared-error estimate
- MLE provides a probabilistic interpretation of least squarederror estimate

Vector/Matrix Representation

 Rewrite the linear regression model for training data using vector/matrix representation

$$y = XW + \varepsilon$$

Augmented input feature corresponding to w_o

$$y = \begin{pmatrix} y^1 \\ \vdots \\ y^N \end{pmatrix} \overset{\text{Solition}}{\underset{\text{Notion}}{\text{Solition}}} \qquad X = \begin{pmatrix} 1 \\ \vdots \\ 1 \\ X_1^1 \\ \vdots \\ X_1^N \\ \dots \\ X_J \end{pmatrix} \overset{\text{Solition}}{\underset{\text{Notion}}{\text{Solition}}} \qquad W = \begin{pmatrix} \omega_0 \\ \omega_1 \\ \vdots \\ \omega_J \end{pmatrix}$$

$$W_{MCLE} = \arg \max_{W} \sum_{l} -(y^{l} - f(x^{l}; W))^{2}$$

$$= \arg \min_{W} \sum_{l} (y^{l} - f(x^{l}; W))^{2}$$

= arg min
$$(\mathbf{y} - \mathbf{X}\mathbf{W})^T(\mathbf{y} - \mathbf{X}\mathbf{W})$$

Re-write using vector representations of N samples in data

$$y = \begin{pmatrix} y^1 \\ \vdots \\ y^N \end{pmatrix} \stackrel{\text{So}}{\underset{\text{los}}{\text{deg}}} \qquad X = \begin{pmatrix} 1 & x_1^1 & \dots & x_J^1 \\ \vdots & \vdots & & \vdots \\ 1 & x_1^N & \dots & x_J^N \end{pmatrix}$$

$$W_{MCLE} = \arg\min(\mathbf{y} - \mathbf{X}\mathbf{W})^T(\mathbf{y} - \mathbf{X}\mathbf{W})$$

Re-write using vector representations of N samples in data

J input features

$$\mathbf{y} = \begin{pmatrix} y^1 \\ \vdots \\ y^N \end{pmatrix} \stackrel{\text{Sol}}{\stackrel{\text{log}}}{\stackrel{\text{log}}{\stackrel{\text{log}}{\stackrel{\text{log}}{\stackrel{\text{log}}{\stackrel{\text{log}}{\stackrel{\text{log}}}{\stackrel{\text{log}}{\stackrel{\text{log}}{\stackrel{\text{log}}}{\stackrel{\text{log}}{\stackrel{\text{log}}}{\stackrel{\text{log}}{\stackrel{\text{log}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}{\stackrel{\text{log}}}{\stackrel{\text{log}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}}{\stackrel{\text{log}}}}{\stackrel{\text{log}}}}{\stackrel{\text{log}}}}{\stackrel{\text{log}}}{\stackrel{\text{log}}}}{\stackrel{\text{log}}}}}}}}}}}}}}}}}}}}}}$$

$$\frac{\delta}{\delta W} (\mathbf{y} - \mathbf{X} \mathbf{W})^T (\mathbf{y} - \mathbf{X} \mathbf{W}) = 0$$

$$\frac{\delta}{\delta W} (\mathbf{y} - \mathbf{X} \mathbf{W})^T (\mathbf{y} - \mathbf{X} \mathbf{W})$$

$$= 2X^T(y - XW) = 0$$

$$W_{MCLE} = (X^T X)^{-1} X^T y$$

Comments on Training Linear Regression Models

Least squared error method

$$W_{MCLE} = (X^T X)^{-1} X^T y$$

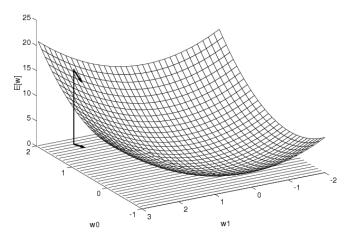
- A single equation for computing the estimate (i.e., a closed-form solution for MLE estimate)
- When the dataset is extremely large, computing X^TX and inverting it can be costly especially for streaming data
- Alternatively, gradient descent method
 - Works well on large datasets

Training Linear Regression with Gradient Descent

Learn Maximum Conditional Likelihood Estimate

$$W_{MCLE} = \arg\min_{W} \sum_{l} (y - f(x; W))^2$$

Can we derive gradient descent rule for training?



Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

Gradient Descent:

Batch gradient: use error $E_D(\mathbf{w})$ over entire training set D Do until satisfied:

- 1. Compute the gradient $\nabla E_D(\mathbf{w}) = \left[\frac{\partial E_D(\mathbf{w})}{\partial w_0} \dots \frac{\partial E_D(\mathbf{w})}{\partial w_n} \right]$
- 2. Update the vector of parameters: $\mathbf{w} \leftarrow \mathbf{w} \eta \nabla E_D(\mathbf{w})$

Stochastic gradient: use $errorE_d(\mathbf{w})$ over single examples

 $d \in D$

Do until satisfied:

- 1. Choose (with replacement) a random training example $d \in D$
- 2. Compute the gradient just for $d: \nabla E_d(\mathbf{w}) = \left[\frac{\partial E_d(\mathbf{w})}{\partial w_0} \dots \frac{\partial E_d(\mathbf{w})}{\partial w_n}\right]$
- 3. Update the vector of parameters: $\mathbf{w} \leftarrow \mathbf{w} \eta \nabla E_d(\mathbf{w})$

Stochastic approximates Batch arbitrarily closely as $\eta \to 0$ Stochastic can be much faster when D is very large Intermediate approach: use error over subsets of D

Training Linear Regression with Gradient Descent

$$W_{MCLE} = \arg\min_{W} \sum_{l} (y - f(x; W))^2$$

Can we derive gradient descent rule for training?

$$\frac{\partial \sum_{l} (y - f(x; W))^{2}}{\partial w_{i}} = \sum_{l} 2(y - f(x; W)) \frac{\partial (y - f(x; W))}{\partial w_{i}}$$
$$= \sum_{l} -2(y - f(x; W)) \frac{\partial f(x; W)}{\partial w_{i}}$$

And if
$$f(x) = w_0 + \sum_i w_i x_i$$
 ...

Gradient descent rule:

$$w_i \leftarrow w_i + \eta \sum_{l} (y^l - f(x^l; W)) \ x_i^l$$

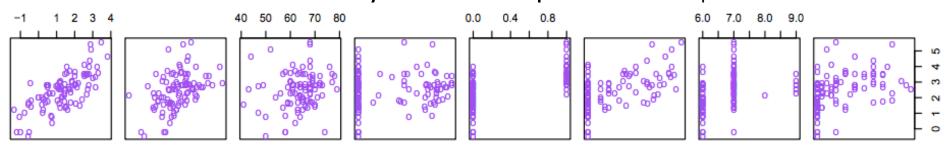
Example: Prostate Cancer

- Is there correlation between the level of prostate-specific antigen and a number of clinical measures in men who were about to receive a radical prostatectomy for 97 men
 - x : clnical measures
 - log cancer volume (lcavol)
 - log prostate weight (lweight)
 - age
 - log of the amount of benign prostatic hyperplasia (lbph)
 - seminal vesicle invasion (svi)
 - log of capsular penetration (lcp)
 - Gleason score (gleason)
 - percent of Gleason scores 4 or 5 (pgg45)
 - y: level of prostate-specific antigen

Hastie/Tibshirani/Friedman Elements of statistical learning

Example: Prostate Cancer

Correlation between y and each input feature x_i



- x : clnical measures
 - log cancer volume (lcavol)
 - log prostate weight (lweight)
 - age
 - log of the amount of benign prostatic hyperplasia (lbph)
 - seminal vesicle invasion (svi)
 - log of capsular penetration (lcp)
 - Gleason score (gleason)
 - percent of Gleason scores 4 or 5 (pgg45)

Example: Prostate Cancer

• Estimated regression coefficients

X	W	_
Term	Coefficient	
Intercept	2.46	_
lcavol	0.68	
lweight	0.26	
age	-0.14	
lbph	0.21	
svi	0.31	
lcp	-0.29	
gleason	-0.02	
pgg45	0.27	_
40 50 60 70 80	0.0 0.4 0.8	6.0 7.0 8.0 9.0

Comments on Least Squared Error Estimate

$$W_{MCLE} = (X^T X)^{-1} X^T y$$

- In many problems of practical interest, N>J (i.e., the number of data points N is larger than the dimensionality J of the input space and the matrix X is of full column rank.)
- When N>J, it is easy to verify that X^TX is necessarily invertible.
- The assumption that X^TX is invertible implies that it is positive definite, thus at the critical point we have found is a minimum.
- What if X has less than full column rank? N<J
 - MAP estimate

How about MAP instead of MLE estimate?

• Let's assume Gaussian prior: each $w_i \sim N(0, \sigma_0)$ for i=1,...,J

$$p(w_i) = \frac{1}{Z} \exp\left(-\frac{(w_i - 0)^2}{2\sigma^{2}}\right)$$

- Note we do not place a prior on w_0 Why?
- We assume a model without an intercept (W=(w₁, ..., w_J)) after mean-centering data y and X. Why? See Hastie/Tibshirani/ Friedman Ex 3.5 page 95.
- MAP estimate is given as

$$\operatorname{arg\,max} \ln P(W \mid X, y) = \operatorname{arg\,max} \ln(X, y \mid W) + \ln P(W)$$

How about MAP instead of MLE estimate?

• Let's assume Gaussian prior: each $w_i \sim N(0, \sigma_0^2)$

$$p(w_i) = \frac{1}{Z} \exp\left(-\frac{(w_i - 0)^2}{2\sigma_0^2}\right)$$

Then MAP estimate is given as

$$\begin{split} W &= \arg\max_{W} \ -\frac{1}{2\sigma_{0}^{2}} \sum_{w_{i} \in W} w_{i}^{2} + \sum_{l \in training \ data} \ln P(Y^{l}|X^{l};W) \\ &= \arg\min_{W} \ \frac{1}{2\sigma_{0}^{2}} \sum_{w_{i} \in W} w_{i}^{2} + \sum_{l \in training \ data} (y^{l} - f(x^{l};W))^{2} \\ &= \arg\min \ (\mathbf{y} - \mathbf{X}\mathbf{W})^{T} (\mathbf{y} - \mathbf{X}\mathbf{W}) + \ (1/2\sigma_{0}^{2}) \ \mathbf{W}^{T}\mathbf{W} \end{split}$$

How about MAP instead of MLE estimate?

Then MAP estimate is

arg min
$$(y - XW)^T (y - XW) + (1/2\sigma_0^2) W^TW$$

$$\frac{\delta}{\delta W} (\mathbf{y} - \mathbf{X}\mathbf{W})^T (\mathbf{y} - \mathbf{X}\mathbf{W}) + (1/2\sigma_0^2) \mathbf{W}^T \mathbf{W} = 0$$

Invertible, even if N<J

$$W_{MAP} = (X^T X + \frac{1}{2\sigma_0^2} I)^{-1} X^T y$$

Small σ_0^2 value means strong prior belief

MAP Estimate and Regularization

MAP estimation

$$\arg\min (\mathbf{y} - \mathbf{X}\mathbf{W})^T (\mathbf{y} - \mathbf{X}\mathbf{W}) + (1/2\sigma_0^2) \ \mathbf{W}^T \mathbf{W}$$
 with prior $w_i \sim N(0, \sigma_0^2)$

More generally, this can be viewed as a regularization

$$arg min (y - XW)^T (y - XW) + \lambda W^TW$$

with regularization parameter $\boldsymbol{\lambda}$

Equivalently
$$||\mathbf{y} - \mathbf{X}\mathbf{W}||_2^2 + \lambda ||\mathbf{W}||_2^2$$

$$p(y|x) = N(f(x), \sigma)$$

E.g., assume f(x) is linear function of x

$$f(x) = w_0 + \sum_i w_i x_i$$

 $p(y|x) = N(w_0 + \sum_i w_i x_i, \sigma)$

• f(x) is linear in x_i 's and also linear in w_i 's

Generalizing Linear Regression: Nonlinear Basis Function

- linear in w_i 's
 - Widely-used assumption because of the mathematical convenience and easy estimation
- linear in x_i 's
 - We can relax this by choosing arbitrary non-linear basis function $\phi(x_i)$
 - So far, we assumed $\phi_i(x) = x$
 - We can also use $\phi_i(x) = (1, x, x^2, x^3)$

Generalizing Linear Regression: Nonlinear Basis Function

$$p(y|x) = N(f(x), \sigma)$$

E.g., assume f(x) is linear function of x

$$f(x) = \sum_{i} w_i \phi_i(x)$$
 $p(y|x) = N\left(\sum_{i} w_i \phi_i(x), \sigma\right)$

Generalizing Linear Regression: Nonlinear Basis Function

Different basis functions can be used

• Polynomial
$$\phi_j(x) = x^{j-1}$$

• Radial basis functions
$$\phi_j(x) = \exp\left(-\frac{(x-\mu_j)^2}{2s^2}\right)$$

• Sigmoidal
$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

Splines, Fourier, Wavelets, etc.

Regression – What you should know

Under general assumption $p(y|x;W) = N(f(x;W),\sigma)$

- 1. MLE corresponds to minimizing Sum of Squared prediction Errors (SSE)
- 2. MAP estimate minimizes SSE plus sum of squared weights
- 3. Again, learning is an optimization problem once we choose our objective function
 - MLE: maximize data likelihood
 - MAP: maximize posterior probability, P(W | data)
- 4. Again, we can use gradient descent as a general learning algorithm
 - as long as our objective f is differentiable wrt W
- 5. Nothing we said here required that f(x) be linear in x -- just linear in W
- 6. Gradient descent is just one algorithm linear algebra solutions too

Logistic Regression as Regression

$$P(Y = 1 | X = < X_1, ...X_n >) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$
 implies

$$P(Y = 0|X = < X_1, ...X_n >) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

implies

$$\frac{P(Y = 0|X)}{P(Y = 1|X)} = exp(w_0 + \sum_i w_i X_i)$$

/linear classification rule!

implies
$$\ln \frac{P(Y = 0|X)}{P(Y = 1|X)} = w_0 + \sum_{i} w_i X_i$$