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Text document retrieval/labelling

 Represent each document by a high-dimensional vector in the space of
words
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Image retrieval/labelling




Dimensionality Bottlenecks

* Data dimension
— Input variables X: High
e 1-5M lexicon token in text documents
e 1024 pixels of a projected image on a IR camera sensor
* N? expansion factor to account for all pairwise correlations
e 1,000,000 genetic variants in a human’s genome

* Information dimension: Low
— Number of free parameters describing probability densities
e Unsupervised learning p(X)

e Supervised learning p(Y|X): the prediction of Y depends on
“information dimension” of X



Intuition: how does your brain store these
pictures?




Brain Representation
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Brain Representation

* Every pixel?

* Or perceptually meaningful
structure?
— Up-down pose
— Left-right pose
— Lighting direction

So, your brain successfully
reduced the high-dimensional
inputs to an intrinsically 3-
dimensional manifold!

. 3 features needed



Principal Component Analysis

Areas of variance in data are where items can be best discriminated and
key underlying phenomena are observed

If two items or dimensions are highly correlated or dependent
— They are likely to represent highly related phenomena

— We want to combine related variables, and focus on uncorrelated or independent ones, especially
those along which the observations have high variance

We look for the phenomena underlying the observed covariance/co-
dependence in a set of variables

These phenomena are called “principal components”



An example:




Principal Component Analysis

* The new variables/dimensions
— Are uncorrelated with one another
* Orthogonal in original dimension space

— Capture as much of the original variance in PC2 PC1
the data as possible

— Are called Principal Components

— Are linear combinations of the original
ones

* Orthogonal directions of greatest i
variance in data

v

* Projections along PC1
discriminate the data most along
any one axis



Principal Component Analysis

First principal component is the direction
of greatest variability (covariance) in the
data

Second is the next orthogonal
(uncorrelated) direction of greatest
variability

— So first remove all the variability along the first component, and
then find the next direction of greatest variability

Andsoon...

PC 2

PC1
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Eigen/diagonal Decomposition

Let S € R™*™ be a square matrix

Theorem: Exists an eigen decomposition

sk s G

Unique
for
distinct
eigen-
values

(cf. matrix diagonalization theorem)

Columns of U are eigenvectors of S

Diagonal elements of Aare eigenvalues of §

A =diag(A1,...,Am), A > Aiga

12




Eigenvalues & Eigenvectors

For symmetric matrices, eigenvectors for distinct eigenvalues
are orthogonal

Svi=Av,Sv,=Av,,and A=A, =v,*v,=0
All eigenvalues of a real symmetric matrix are real.
if |S-Al|=0andS=S" = AEN

All eigenvalues of a positive semidefinite matrix are non-
negative

VweER" w Sw=0,thenif Sv=Av=21=0
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Computing the Components

Projection of vector x onto an axis (dimension) u is u'x

Assume X is a normalized nxp data matrix for n samples and p features.
Direction of greatest variability is that in which the average square of the
projection is greatest:

Maximize  (1/n) u™X"Xu
5.t uu=1
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Computing the Components

Projection of vector x onto an axis (dimension) u is u'x

Assume X is a normalized nxp data matrix for n samples and p features.
Direction of greatest variability is that in which the average square of the
projection is greatest:

Maximize  (1/n) u™X"Xu
s.t uu=1
Construct Langrangian (1/n) u™X™Xu + A(1-u'u)

Vector of partial derivatives set to zero
1/nXXu—Au =0
or equivalently Su—Au =0 (S =1/n X™X: covariance matrix)

As u # 0 then u must be an eigenvector of S with eigenvalue A
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Computing the Components

Projection of vector x onto an axis (dimension) u is u™x

Assume X is a normalized nxp data matrix for n samples and p features.
Direction of greatest variability is that in which the average square of the
projection is greatest:

Maximize  (1/n) u™X"Xu
s.t uu=1
Construct Langrangian (1/n) u™X™u — Au'u

Vector of partial derivatives set to zero

1/nXXu—-Au =0

or equivalently Su — Au =0 (S =1/n X™X: covariance matrix)
As u # 0 then u must be an eigenvector of S with eigenvalue A

— MAisthe principal eigenvalue of the covariance matrix S
— The eigenvalue denotes the amount of variability captured along that dimension
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PCs, Variance and Least-Squares

The first PC retains the greatest amount of variation in the sample

The k" PC retains the kth greatest fraction of the variation in the
sample

The kt" largest eigenvalue of the covariance matrix C is the variance
in the sample along the kt" PC

The least-squares view: PCs are a series of linear least squares fits
to a sample, each orthogonal to all previous ones (Bishop 12.1.2)



How Many PCs?

For p original dimensions, sample covariance matrix is pxp, and has up to p
eigenvectors. So p PCs.

Where does dimensionality reduction come from?

Can ignore the components of lesser significance.
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You do lose some information, but if the eigenvalues are small, you don’t lose much

— pdimensions in original data

— Calculate p eigenvectors and eigenvalues
— choose only the first g eigenvectors, based on their eigenvalues
— final data set has only q dimensions
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Applying PCA to Images

361 x 261 pixels, 83781 dimensional data
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Reconstructing the Images from 4 PCs

* The principal components are also images
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Reconstructing the Images from 4 PCs
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Summary:

Principle
— Linear projection method to reduce the number of parameters
— Transfer a set of correlated variables into a new set of uncorrelated variables
— Map the data into a space of lower dimensionality
— Form of unsupervised learning

Properties
— It can be viewed as a rotation of the existing axes to new positions in the space defined by original
variables
— New axes are orthogonal and represent the directions with maximum variability



