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Max margin classifiers

e |nstead of fitting all points, focus on boundary points

e Learn a boundary that leads to the largest margin from both
sets of points
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Support Vector Machines

Two optimization problems: For the separable and non separable cases
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Non linearly separable case

e Instead of minimizing the number of misclassified points we can minimize
the distance between these points and their correct plane

The new optimization problem is:
T n
. W W
min,, +EC5i
2 i=1

subject to the following inequality
L AN -1 plane constraints:
For all x;in class +1

WTX+b = 1' SI
For all x;in class -1
wix+b < -1+¢,

Wait. Are we missing something?




Support Vector Machines

Two optimization problems: For the separable and non separable cases
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For all x;inclass +1

Min (wTw)/2
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, For all x;inclass -1
For all xinclass -1
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W'x+b < -1+ €.
wix+b < -1 !

For all i
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e Instead of solving these QPs directly we will solve a dual
formulation of the SVM optimization problem

e The main reason for switching to this type of representation is that
it would allow us to use a neat trick that will make our lives easier

(and the run time faster)



An alternative (dual) representation of the SVM

QP

e We will start with the linearly separable case

¢ Instead of encoding the correct classification rule and
constraint we will use Lagrange multipliers to encode it as
part of our minimization problem

Min (wTw)/2

For all xin class +1
wix+b =1
For all xin class -1

wix+b = -1

Why? U

Min (wTw)/2

(Wix+b)y. = 1



An alternative (dual) representation of the SVM

QP

Min (w'w)/2

(Wix+b)y, = 1
e We will start with the linearly separable case
e Instead of encoding the correct classification rule a constraint

we will use Lagrange multipliers to encode it as part of our
minimization problem

Recall that Lagrange multipliers can be
applied to turn the following problem:
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Lagrange multiplier for SVMs

Dual formulati?n Original (primal) formulation
. WowW

min,, max, —— - Yalw'x +b)y -1l Min (w'w)/2

o =0 Vi (Wix+b)y. = 1

i

w: primal parameters
a;’s: dual parameters



Lagrange multiplier for SVMs

Dual formulation
w'w
2

min, , max,

- Eai[(WTxi +b)y, —1]

a =0 Vi

l

Using this new formulation we can derive w and b by
taking the derivative w.r.t. w leading to:

W = E(xixiyi, where a; =0
i

taking the derivative w.r.t. b we get:

Eaiyi =0

Original (primal) formulation
Min (w'w)/2

(Wix+b)y. = 1



Lagrange multiplier for SVMs

Dual formulation Original (primal) formulation

_Eai[(wai+b)yi—l] Min (w'w)/2

a. =0 Vi (Wix+b)y, = 1

l

min, , max,

Substituting w into our target
Using this new formulation we can derive w and b by | function and using the

taking the derivative w.r.t. w leading to: additional constraint we get:

W = Ea_x_y_, where o. =0 Dual formulation
1 1s1 l
max Ea — Eoca]ylijl X;

E(x

taking the derivative w.r.t. b we get:

Eaiyi=




Dual SVM - interpretation

For o’s that are not O
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Computational Cost

During training, the computational costs for solving primal vs.
dual problems are

Primal problem: Dual problem:
|
. T T
min (w'w)/2 max_, 20@ —EZaiajyiij. X,
(Wix+b)y, = 1 :

EaiYi =0 Dot product for all
i training samples

o, =0 Vi

m parameters n parameters

- The cost of QP solver depends on #variables

- Often, n < m, where n = #samples, m = #input features
->Solving dual is often more efficient

- Even when n > m, working with dual allows you to use kernels!



Computational Cost

* During testing, the computational costs using primal vs. dual

representations are Dot product with all
training samples?
Using primal variables: Using dual variables:
. T .
Yoiew = slgn(w Xoow T b) View = Slgn(z aiiniTxnew +b)
m operation mr operations where ris

the number of support
vectors (0,>0)

If one uses dual parameters to make predictions, the prediction depends
only on the support vectors, but this is not explicitly represented in the
primal



Dual formulation for non linearly separable
case

ww
min,, + > Ceg,
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Dual formulation for non linearly separable
case

Dual target function: To evaluate a new sample x; we
need to compute:

max Z(xi _;izjaiaJYiijin
Eaiyi=0 Wij+b=20‘iinin+b

C>a =0 Vi

\ The only difference is that

the a,’s are now bounded



Dual SVM - Interpretation for Non-linearly

Separable Case

Support vectors: data
points in the wrong side
of margin W = E

i

?‘ix iy

For o’s that are not O
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Error Function for SVM

t > 0 for both positive
and negative training

samples if classified
/ correctly

Error(t) Let t = (wix;+b)y,

Ideal classifier:
0O ift>0

1 Error(t) =
1 ift<O
> SVM
0 1 t
Error(t) = [1-t],

\ N

[ ], denotes
positive part

Hinge Loss



FROM LINEAR TO NON-LINEAR
DECISION BOUNDARY



Classifying in 1-d

Can an SVM correctly classify
this data?

What about this?
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Classifying in 1-d

Can an SVM correctly classify

this data?

XZ

And now?
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Non-linear SVMs: 2D

* The original input space (x) can be mapped to some higher-
dimensional feature space (p(x) ) where the training set is

separable:
o(x) :(X12aX229\/2X1X2)
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This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt 21



Non-linear SVMs: 2D

* The original input space (x) can be mapped to some higher-
dimensional feature space (p(x) ) where the training set is

separable:
o(x) :(X12axzza\/2X1X2)

t vy=(x. v\ . \/ZXIXZ t
[f data 1s mapped into sufficiently high dimension, then
o c c .
. samples will in general be linearly separable;
/ N data points are 1n general separable in a space of N-1
°* | dimensions or more!!!
. ® i ° ¢ ® :)(22
o . ........... . ------- ° ° . ¢ ’
o : ¢

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt 22



Transformation of Inputs

* Possible problems

— High computation burden due to high-dimensionality

— Many more parameters

 SVM solves these two issues simultaneously

— “Kernel tricks” for efficient computation

— Dual formulation only assigns parameters to samples, not features

Input space

A

Feature space



Quadratic kernels

e While working in higher dimensions is beneficial, max, Eai _Eaianiyjq)(Xi)q)(Xj)

it also increases our running time because of the ’ .
dot product computation Eaiyi =0
i
. . : |
However, there is a neat trick we can use a, =0 i
e consider all quadratic terms for x,, X, ... X .
number of
The V2 term \/_1 features in
. 2 .
will become ' «—— m+1 linear terms each vector
clear in the ax
next slide D(x) =
X2 _
. ¥ m quadratic terms
X,

\/Exlxz

44—

m(m-1)/2 pairwise terms
\2x, x,



Dot product for quadratic kernels

How many operations do we need for the dot product?

1 1
V2x, A2
V2x, A2,
D(x)D(2) = = ¥ 2xz,+ Y xi2
.X12 ) le I I
X 2 m m

V2xx, A2z
\/E'xm—l'xm \/Ezm—lzm

2
D+ E E2xiszizj +1

I j=i+l

m(m-1)/2 =~ m?2



The kernel trick

How many operations do we need for the dot product?

O(x)D(z) = Einzi + Exizzf + E sziszizj +1

i j=i+l

m m m(m-1)/2 =~ m?

However, we can obtain dramatic savings by noting that

O(x)P(7) = k(x,7) = (x"z+1)?

(x"2)* +2(x" 2) +1
= (E 'xiZi)2 + szizi +1
/= 22xizi +Exfzf +ZE sziszizf +1

i j=itl

We only need m
operations!

Note that to evaluate a new sample we
are also using dot products so we save
there as well



Our dual target function:

Kernel SVM

(I)(Xi)T(I)(Xi)

s, S - By,

a. =0 Yi

K(X;,X:)

To evaluate a new sample x; we
need to compute:

b

=+

wa b= Y ay@x,) Bx));

+b

) ——

w'x. +b= Eociyik(xi,xj
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Other kernels

e The kernel trick works for higher order polynomials as well.

e For example, a polynomial of degree 4 can be computed using (x"z+1)*
and, for a polynomial of degree d (x"z+1)¢

e Beyond polynomials there are other very high dimensional basis
functions that can be made practical by finding the right Kernel Function
-Radial-Basis-style Kernel Function:

(x—zf)

K(x,2)= exp(— =

- Neural-net-style Kernel Function:

K(x,7) = tanh(xx .z - 0)



Why do SVMs work?

e If we are using huge feature spaces (with kernels) how come we are not
overfitting the data?

- Number of parameters remains the same (and most are set to 0)

- While we have a lot of input values, at the end we only care about the
support vectors and these are usually a small group of samples

- The minimization (or the maximizing of the margin) function acts as a
sort of regularization term leading to reduced overfitting



Software

A list of SVM implementation can be found at http://
www.kernel-machines.org/software

Some implementation (such as LIBSVM) can handle multi-
class classification

SVMLight is among one of the earliest implementation of SVM

Several Matlab toolboxes for SVM are also available



Multi-class classification with SVMs

What if we have data from more than two

classes?
e Most common solution: One vs. all
° - create a classifier for each class against all
O ® other data
P ®
® - for a new point use all classifiers and
® ® o compare the margin for all selected classes
®
® 9 O
o o Note that this is not necessarily valid

® since this is not what we trained the SVM
for, but often works well in practice
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Applications of SVMs

Bioinformatics

Machine Vision

Text Categorization

Ranking (e.g., Google searches)
Handwritten Character Recognition
Time series analysis

— Lots of very successful applications!!!



Important points

Maximum margin principle

Target function for SVMs

Linearly separable and non separable cases
Dual formulation of SVMs

Support vectors of SVMs

Kernel trick and computational complexity



