Neural Networks

Machine Learning 10-601B

Seyoung Kim

Many of these slides are derived from Tom
Mitchell. Thanks!

Neural Networks: Biological Motivation

D
F 4

Signal
direction

Presynaptic cell Synaptic

Myelin sheath terminals A\, Postsynaptic cell

[W=
/—”\" \ \"\.,

N\

Logistic Regression is linear classifier

Assumes the following functional form for P(Y | X):

1

PY =1|X) =

Decision boundary:

P(Y =0/X) = P(Y = 1|X)

_\/\\/O

(Linear Decision Boundary)

1 + exp(—(wo + >, wiX;))

[slide: Aarti Singh]

Artificial Neural Networks to learnf: X => Y

f might be non-linear function
X (vector of) continuous and/or discrete vars
Y (vector of) continuous and/or discrete vars

Represent f by network of logistic units

Each unit is a logistic function
1

1+ exp(wo + >2; wix;)

unit output =

MLE: train weights of all units to minimize sum of squared
errors of predicted network outputs

MAP: train to minimize sum of squared errors plus weight
magnitudes

Multilayer Networks ot Sigmoid Units

4000

a head
a hid

+ hod

x had

¢ hawed
v heard
o heed
< hud

» who'd
~ hood

output layer
head hid A whod hood

1000 1400

F1 * 2 Input layer B %0 by (D)

ALVINN
[Pomerleau 1993]

Shar Straight Shai
Let Abead Right
l l ! 30 Output
Mg Units
4 Hidden
Units
30x32 Sensor

Input Retina

Connectionist Models

Consider humans:
e Neuron switching time ~ .001 second
e Number of neurons ~ 10!
e Connections per neuron ~ 10*7°
e Scene recognition time ~ .1 second
e 100 inference steps doesn’t seem like enough

— much parallel computation

Properties of artificial neural nets (ANN’s):
e Many neuron-like threshold switching units
e Many weighted interconnections among units

e Highly parallel, distributed process

Sigmoid Unit

S

net ZEOW,- X; o = G(net) =
-net
+e

o(x) is the sigmoid function
1
1+e "

Nice property: %{,”—) =o(z)(1 — o(x))

We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation

M(C)LE Training for Neural Networks

» Consider regression problem f:X—=2Y, for scalar Y

R

* Let’s maximize the conditional data likelihood
W — arg max In HP(YZ|XZ, W)
[

W« argmin > (y' — f(z1))?
W

MAP Training for Neural Networks

» Consider regression problem f:X—=2Y, for scalar Y

R

e Let’s maximize the posterior (MAP)

W «— arg max in P(W) [P(YY X', W)
[

W —argmin ey wi| + D - f@h))?
] L
I

In P(W) <=c). w?

Gradient Descent

Gradient

OF OF OF

. .

ow, dw, Ow,

vV E[]

Training rule:
AW = —nV E|[]

1.e., 5
E
Aw; = —14—
v n@wi

Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient V Ep|]
2.W W — nVED[u';’]

Incremental mode Gradient Descent:

Do until satisfied
e For each training example d in D
1. Compute the gradient V E4[]
2. W 4 W — nVEd[zD’]
1
24d
Ed[w] = §(td — Od)

ED[ZE] = —) (td — Od)2

€D

t, = target output
o4 = observed unit output

Incremental Gradient Descent can approximate
Batch Gradient Descent arbitrarily closely if n

made small enough

head hid A whod hood

Backpropagation Algorithm (MLE)

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network | Forward propagation
and compute the network outputs

2. For each output unit £

X4 = input
;. Ok(l — Ok)(tk - Ok) tj: target output

3. For each hidden unit A 04 = observed unit output

w; = wt fromito j
(512. — Oh.(]- - Oh.) > Wh,k
k€outputs

4. Update each network weight w; ;

Wi j < wij + Aw;

where

Aw; j = nd;x; Backward propagation

doy Onety

= —2(ta = 0d) Onety Ow;
But we know:
0oy do(nety)
= = 1 —
onety onety oa(0d)
onety O(W-Zq) -
8'wz- N 6wz~ — i
So:
oF

= — Y (tg —og)oq(l —oy)x;
ow; deD(d 4)0d(7 d

More on Backpropagation

e Gradient descent over entire network weight
vector

e Easily generalized to arbitrary directed graphs

e Will find a local, not necessarily global error
minimum

— In practice, often works well (can run multiple
times)

e Often include weight momentum «
Aw; j(n) = ndjx; ; + aAw; j(n — 1)
e Minimizes error over training examples

— Will it generalize well to subsequent
examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast

Overfitting in ANNs

Error versus weight updates (example 1)

0.01 T T T
N -
0.009 |. Training set error . .
Validation set error y
0.008 [7
auy

0007 .
o +
2 0006 b
[54] M

0.005 | i .

0.004 7

0.003 [.

0.002 : L :

0 5000 10000 15000 20000
Number of weight updates
Error versus weight updates (example 2)
0.08 . . T
'_\. . .
007 °, Training set error . §
0.06 _“wam: Validation set error + |

005 k :m% i

g 0.04 . \\\M
u-] *
003 -
0.02 | A .
001 RN -
0 1
0 1000 2000 3000 4000 5000 6000

Number of weight updates

001

[M
0.007 [,

Dealing with Overfitting =

0.006
0.005
0.004
0.003

Our learning algorithm involves a parameter
n=number of gradient descent iterations
How do we choose n to optimize future error?

ror versus weight updates (example 1)
T T

&

D

Training set error
Validation set error

0

5000

10000 15000 20000
Number of weight updates

e.g. the n that minimizes error rate of neural net over future data

Error versus weight updates (example 1)
001 T T

Dealing with Overfitting = e

‘.
0007
0006 [5

Our learning algorithm involves a parameter I

Number of weight updates

n=number of gradient descent iterations
How do we choose n to optimize future error?

e Separate available data into training and validation set

e Use training to perform gradient descent

* n < number of iterations that optimizes validation set error

- gives unbiased estimate of optimal n
(but a biased estimate of true error)

K-Fold Cross Validation

ldea: train multiple times, leaving out a disjoint subset of data each time for test.
Average the test set accuracies.

Partition data into K disjoint subsets
For k=1 to K
testData = kth subset
h & classifier trained* on all data except for testData
accuracy(k) = accuracy of h on testData
end

FinalAccuracy = mean of the K recorded testset accuracies

* might withhold some of this to choose number of gradient decent steps

Leave-One-Out Cross Validation

This is just k-fold cross validation leaving out one example each iteration

Partition data into K disjoint subsets, each containing one example
For k=1 to K
testData = kth subset

h €< classifier trained® on all data except for testData

accuracy(k) = accuracy of h on testData
end

FinalAccuracy = mean of the K recorded testset accuracies

* might withhold some of this to choose number of gradient decent steps

Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

¢ but might require exponential (in number of
inputs) hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers
[Cybenko 1988].

Convergence of Backpropagation

Gradient descent to some local minimum
e Perhaps not global minimum...
e Add momentum
e Stochastic gradient descent

e Train multiple nets with different inital weights

Nature of convergence
e Initialize weights near zero
e Therefore, initial networks near-linear

e Increasingly non-linear functions possible as
training progresses

Learning Hidden Layer Representations

.4

A target function:

‘/'\
’

/

\ O
‘A‘\‘
SN

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??

Learning Hidden Layer Representations

A network:

Learned hidden layer representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001

Inputs Outputs

Training

Sum of squared errors for each output unit
0.9 | | | I

0.8
0.7 r

03

0.2

0 500 1000 1500 2000 2500

Neural Nets for Face Recognition

left strt rght up

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces

Learned Hidden Unit Weights

Learned WW
strt i

left

left strt rght up

N

30x32

Typical input images

http://www.cs.cmu.edu/~tom /faces.html

[Hinton & Salakhutdinov, 2006]

Deep Belief Networks

* Problem: training networks with many hidden layers doesn’t
work very well

— local minima, very slow training if initialize with zero weights

* Deep belief networks

— autoencoder networks to learn low dimensional encodings

0002
0002

[Hinton & Salakhutdinov, 2006]

Deep Belief Networks

original image

reconstructed from
2000-1000-500-30 DBN

reconstructed from
2000-300, linear PCA

vVersus

0

_0\\
N
O

M
barbm ;
0002

0002
8 _:'_M
v
Sl
RIS
LSOO,

Encoding of digit images in two dimensions
[Hinton & Salakhutdinov, 2006]

784 pixel image -> 2 dimension 784-1000-500-250-2 DBNet
linear encoding (PCA)

CoOoONOOOBABWON-=-O

D /&3 4s&TdQ

[Hinton & Salakhutdinov, 2006]
Deep Belief Networks: Training

__

__

__

RBM
Pretraining Unrolling Fine-tuning

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the “data” for training the next RBM in the stack. After the pretraining, the RBMs are
“unrolled” to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Restricted Boltzman Machine

Bipartite graph, logistic activation
Inference: fill in any nodes, estimate other nodes
consider v, h; are boolean variables

Very Large Scale Use of DBNGSoc Le, et al., icmi, 2012]

Data: 10 million 200x200 unlabeled images, sampled from YouTube
Training: use 1000 machines (16000 cores) for 1 week

Learned network: 3 multi-stage layers, 1.15 billion parameters

Achieves 15.8% accuracy classifying 1 of 20k categories in ImageNet data

C RRIE S
| ﬁﬁ% mam

Images
that most
excite the
feature:

Image
synthesized
to most
excite the
feature:

. Living thing
Semantic Memory Model Based on ANN’s (D Prant

. Animal

. jiee
Flower
Bird
Flower
Pine
Oak
Rose
Daisy
Robin
Canary
()| Sunfish
Salmon

[McClelland & Rogers, Nature 2003]

Pine
Oak
Rose
Daisy
Robin
Canary
Sunfish
Salmon

Iltem

Pretty
Tall
Living
Green
Red
Yellow

AL XN
IS
I
caN € Y/

HAs |)

Relation

Grow
Move
Swim
Fly
Sing

No hierarchy given.

Bark
Petals
Wings
Feathers
Scales
Gills
Roots
Skin

Train with assertions,
e.g., Can(Canary,Fly)

Attribute

Humans act as though they have a hierarchical memory organization

1. Victims of Semantic Dementia progressively lose knowledge of objects

But they lose specific details first, general properties later, suggesting
hierarchical memory organization

Thing
/
NonlLiving Living
/\ PN

2. Children appear to learn general categories and Plant Animal

properties first, following the same hierarchy, top /\
down'. Fish Bird

2

Canary

Question: What learning mechanism could produce this emergent hierarchy?

* some debate remains on this.

Memory deterioration follows semantic hierarchy
[McClelland & Rogers, Nature 2003]

a b

Picture naming responses for JL 1.09

ltem Sept.91 March 92 March 93 1 0s

Bird + " Animal g 08 |HDC

S 0 IF

Chicken + ¥ Animal =

Duck — + Bird Dog S 087

Swan + Bird Animal .g

Eagle Duck Bird Horse g 044

Ostrich Swan Bird Animal g

Peacock Duck Bird Vehicle 0.2+

Penguin Duck Bird Part of animal _&[ﬂj

Rooster Chicken Chicken Dog 0.0- == c0om SCat Dist

Feature type

¢ IF's delayed copy of a camel d DC’s delayed copy of a swan

Figure 2 | Evidence of conceptual disintegration in semantic dementia. a | Naming
responses given by patient JL to pictures of birds (drawn from a set of line drawings for which

a b
Epoch 250 Epoch 750 Epoch 2,500 Epoch 500 Epoch 1,500 Epoch 2,500

Pine ‘[l[l i]] 25-
Osk ks ll]l] i " “ 2.0
Rose | [ﬂ] II I]
Dalsy N [I] I]" N
Robin eeill ISl Il |]I]

Canary] Mol I I]I] 064

1.5

Euclidean distance

Pire ————y

T I T

Daisy =———————-

ccoczpox= Lrexc>cC _c_g-ﬁc
Salmon ogng‘_goﬁ BZEESELC 5580
BoeeeT0 [JI00 (L ST 55857e08 =8%CggEs £33
1 X%] 517 DG
c d
1.0
1.2 1
§ 1.0 0.8 -
S
1%
é 0.8+ é 0.6
[© — Canary-CAN-Grow
_§ 0.6+ = ~ Canary-CAN-Move
o — Plants vs. Animals < 0.4 == Canary-CAN-Fly
2 04- = Birds vs. Fish — Canary-CAN-Sing
. e TTE2S VS, Flowers 054 == Pine-HAS-Leaves
0.2 == Robin vs. Canary :
== Pine vs. Oak
0.0 T T T T T 0.0+ T T T T T
0 500 1,000 1,500 2,000 2,500 0 500 1,000 1,500 2,000 2,500
Leaming epochs Learning epochs

Figure 4 | The process of differentiation of conceptual representations. The representations are those seen in the feedforward
network model shown in FIG. 3. a | Acquired patterns of activation that represent the eight objects in the training set at three points in
the leaming process (epochs 250, 750 and 2,500). Early in leaming, the pattems are undifferentiated; the first difference to appear is
between plants and animals. Later, the patterns show clear differentiation at both the superordinate (plant-animal) and intermediate
(bird-fishvtree-flower) levels. Finally, the individual concepts are differentiated, but the overall hierarchical organization of the similarity
structure remains. b | A standard hierarchical clustering analysis program has been used to visualize the similarity structure in the
patterns shown ina. The algorithm searches the patterns to find the two that are the closest, according to a Euclidean distance
measure, creates a node in the tree at a vertical position corresponding to the distance between them, replaces the two patterns
with their averaqge, and then iterates until one arand average pattem remains. ¢ | Pairwise distances between representations of

ANN Also Models Progressive Deterioration

Activation

[McClelland & Rogers, Nature 2003]

Canary-CAN-Grow
Canary-CAN-Move o
= (Canary-CAN-Fly
0.4 — Canary-CAN-Sing O
= Pine-HAS-Leaves
o
0.2 —
0.0 -
| | [[[| |
0 1 2 3 4 5 6
Noise

average effect of noise in inputs to hidden layers

What you should know: Artificial Neural Networks

Highly non-linear regression/classification
Vector-valued inputs and outputs

Potentially millions of parameters to estimate

Hidden layers learn intermediate representations
Actively used to model distributed computation in brain

Backpropagation algorithm for learning
Gradient descent, local minima problems

Overfitting and how to deal with it

Many extensions

