Markov Decision Process and Reinforcement
Learning

Machine Learning 10-601B

Many of these slides are derived from Tom
Mitchell, William Cohen, Eric Xing. Thanks!

Types of Learning

Supervised Learning

— A situation in which sample (input, output) pairs of the function to be
learned can be perceived or are given

— You can think about it as if there is a kind teacher
- Training data: (X,Y). (features, label)
- Predict Y, minimizing some loss.
- Regression, Classification.

Unsupervised Learning

- Training data: X. (features only)
- Find “similar” points in high-dim X-space.
- Clustering.

Example of Supervised Learning

Predict the price of a stock in 6 months from now, based on
economic data. (Regression)

Predict whether a patient, hospitalized due to a heart attack,
will have a second heart attack. The prediction is to be based
on demographic, diet and clinical measurements for that
patient. (Logistic Regression)

Identify the numbers in a handwritten ZIP code, from a
digitized image (pixels). (Classification)

OClAD¥S5LT89
0 1 23957% 7
O1234S5L7%9
Ql23Y56)57
0| AD3ELEETET
bl%&%&&ZEQ

What is Learning?

_earning takes place as a result of interaction
petween an agent and the world. The idea behind

earning is that

— Percepts received by an agent should be used not only for
understanding/interpreting/prediction, as in the machine
learning tasks we have addressed so far,

but also for acting, and furthermore for improving the
agent’s ability to behave optimally in the future to achieve
the goal.

RL is learning from interaction

percept Environment

agtion

Examples of Reinforcement Learning

How should a robot behave so as Cf%’ Q\]\&)

to optimize its “performance”? (Robotics)
‘v"“ A\)‘
Y

&=

How to automate the motion of

a helicopter? (Control Theory)

How to make a good chess-playing
program? (Artificial Intelligence)

Supervised Learning vs Reinforcement Learning

e Supervised learning * Reinforcement learning for
learning a policy

f:X—=Y ™: S— A
— X:inputs — S: states
— Y: outputs — A: actions
— Take action A to affect state S
— The predicted outputs can be — The predicted action A cannot
evaluated immediately by the be evaluated directly but can
teacher be given positive/negative
rewards
— fevaluated with loss function — Policy evaluated with value

functions

Reinforcement Learning

* Reinforcement Learning

— in the case of the agent acting on its environment, it receives some

evaluation of its action (reinforcement), but is not told about which
action is the correct one to achieve its goal

— Imagine learning to go back to GHC from this room ...

- Training data: (S, A, R). (State-Action-Reward)

- Develop an optimal policy (sequence of
decision rules) for the learner so as to
maximize its long-term reward.

- Robotics, Board game playing programs.

Elements of RL

e policy m: S— A
- A map from state space to action space.
- May be stochastic.
* reward function R(S)
- It maps each state (or, state-action pair) to
a real number, called reward.
e value function
- Value of a state (or, state-action pair) is the
total expected reward, starting from that
state (or, state-action pair).

History of Reinforcement Learning

Roots in the psychology of animal learning (Thorndike,1911).

Another independent thread was the problem of optimal

control, and its solution using dynamic programming
(Bellman, 1957).

Idea of temporal difference learning (on-line method), e.g.,
playing board games (Samuel, 1959).

A major breakthrough was the discovery of Q-learning
(Watkins, 1989).

10

Robot in a room

actions: UP, DOWN, LEFT, RIGHT

UP

-1
80% move UP
10% move LEFT

10% move RIGHT

START

 reward +1 at [4,3], -1 at [4,2]
e reward -0.04 for each step
* what’s the strategy to achieve max reward?

e what if the actions were NOT deterministic?

11

Reward for each step -2

=)
AR 2R

Reward for each step: -0.1

- - |
1}
1} 4 -

Reward for each step: -0.04

=)
=)

=)
t
1
t

The Precise Goal

To find a policy ™ : S — Athat maximizes the Value function.

There are different approaches to achieve this goal in various
situations.

Value iteration and Policy iteration are two more classic

approaches to this problem. But essentially both are dynamic
programming.

Q-learning is a more recent approaches to this problem.
Essentially it is a temporal-difference method.

16

Markov Decision Processes

A Markov decision process is a tuple (S, A, {P..},v, k) where:

e S is a set of states. (For example, in autonomous helicopter flight,
S might be the set of all possible positions and orientations of the
helicopter.)

e Aisaset of actions. (For example, the set of all possible directions
in which you can push the helicopter’s control sticks.)

e P, are the state transition probabilities. For each state s € .S and
action a € A, P,, is a distribution over the state space. We’'ll say
more about this later, but briely, P;, gives the distribution over
what states we will transition to if we take action a in state s.

e v € [0,1) is called the discount factor.

e R: Sx A Risthe reward function. (Rewards are sometimes

also written as a function of a state S only, in which case we would
have R : S +— R).

17

The dynamics of an MDP

We start in some state s, and get to choose some action ¢, €
A

As a result of our choice, the state of the MDP randomly
transitions to some successor state s,, drawn according to s,~

P Oal

S

Then, we get to pick another action a,

ag ai

ag as
S0 > S1 > S9 —» S3 —> ...

The dynamics of an MDP, (Cont’d)

Upon visiting the sequence of states s, s, ..., with actions q,, a,, ..., our
total payoff is given by

R(s0,a0) + YR(s1,a1) +v*R(s2,a2) + ...

Or, when we are writing rewards as a function of the states only, this
becomes

R(s0) + YR(s1) + v*R(s2) + ...

— For most of our development, we will use the simpler state-rewards
R(s), though the generalization to state-action rewards R(s; a) offers no
special diffculties.

Our goal in reinforcement learning is to choose actions over
time so as to maximize the expected value of the total payoff:

E[R(so) + vR(s1) +v*R(s2) + ...]

19

Policy

A policy is any function 7 : S —. Aipping from the states to the
actions.

We say that we are executing some policy if, whenever we are in
state s, we take action a = 7(s).

We also define the value function for a policy T according to

V7Ti(s) = E[R(SQ) +vR(s1) +Y°R(s2) + ... | 50 = S,ﬂ']

— V7 (s) is simply the expected sum of discounted rewards upon starting in
state s, and taking actions according to .

Value Function

* Given a fixed policy 7, its value function V" satisfies the
Bellman equations:

VT(s) = R(s) +7 D Pun(s)(s)V7(s)

s'eS '\

expected sum of
future discounted rewards

Immediate reward

— Bellman's equations can be used to efficiently solve for I'" (see later)

The Grid world

M = 0.8 1n direction you want to go
0.2 in perpendicular < 0.1 left
' 0.1 right

Policy: mapping from states to actions utilities of states:

. 3| —|— | — | [T 3| 0812 | 0868 | 0.912 T
An optimal

policy for T

the 2 T 1 2 | 0762 0.660 1
stochastic

environmen T | 1 0.705 | 0.655 | 0.611 | 0.388
g I 2 3 4 I 2 3 4

Environment < Observable (accessible): percept identifies the state

Partially observable
Markov property: Transition probabilities depend on state only, not on the path to the

state.
Markov decision problem (MDP).

Partially observable MDP (POMDP): percepts does not have enough info to identify
transition probabilities.

Optimal value function

 We define the optimal value function according to

V*(s) = max V7 (s) (1)

A

— In other words, this is the best possible expected sum of discounted
rewards that can be attained using any policy

 There is a version of Bellman's equations for the optimal value
function:

V*(s) = R(s) + max-y > Puls (2)
s'eS

— Why?

23

Optimal policy

* We also define the optimal policy: 7~ : S — A as follows:

e Fact:
V*(s) = V7™ (s) > V7(s)

— Policy 7* has the interesting property that it is the optimal policy for all states s.
* |tis not the case that if we were starting in some state s then there'd be some optimal
policy for that state, and if we were starting in some other state s, then there'd be some
other policy that's optimal policy for s,,.
* The same policy 7~ attains the maximum above for all states s. This means that we can
use the same policy no matter what the initial state of our MDP is.

24

The Basic Setting for Learning

Training data: n finite horizon trajectories, of the form

{805Qys¥yseeesSysQrs¥rySr i}

Deterministic or stochastic policy: A sequence of
decision rules

1Ty, T ey T}

Each # maps from the observable history (states and
actions) to the action space at that time point.

25

Algorithm 1: Value iteration

* Consider only MDPs with finite state and action spaces
(IS] < o0, [A] < 00)

* The value iteration algorithm:

1. For each state s, initialize V' (s) := 0.
2. Repeat until convergence {

e For every state, update
V(s):= R(s) + MaXecaA ¥) yes Psa(s’)V§(3’).

;

* It can be shown that value iteration will cause V' to converge to V' *. Having found
V*, we can find the optimal policy as follows:

26

Algorithm 2: Policy iteration

* The policy iteration algorithm:

1. Initialize m randomly.

2. Repeat until convergence {
o Let V:=VT

o For each state s, let 7(s) := maxqea D oeg Psa(s)V*(5).

;

— The inner-loop repeatedly computes the value function for the current
policy, and then updates the policy using the current value function.

— Greedy update

— After at most a finite number of iterations of this algorithm, V" will
converge to V'*, and & will converge to =*.

27

Utility estimates

Convergence

The utility values for selected states at each iteration step in the

application of VALUE-ITERATION to the 4x3 world in our example
| - (43)
-e (3,3)
.. 63
: P g (L)
i/ e ~ @)
osti [7
I (4,1)
0 E fl
‘\:\.\ /’
05
e (42)
0 5 10 15 20 25 30
Number ot iterations

+1
-1
start
1 4

Thrm: As t->o, value iteration converges to exact U even if updates are

done asynchronously & i 1s picked randomly at every step.

28

Convergence

1 v — ! -
0.8 0.8
g 06 t g 06¢
g
2 0.4 S 04t 1
0.2 02t
0 : : : 0 . :
0 - 10 15 20 0 5 10 15 20
Number of iterations Number of iterations
(a) (b)
- Figure 17.6 (a) The RMS (root mean square) error of the utility estimates conipared to the

correct values, as a function of iteration number during value iteration. (b) The expected policy
loss compared to the optimal policy.

When to stop value iteration?

29

Q learning

Define Q-value function

Vis) = max Q(s,a)

Rule to choose the action to take

a = argmax Q(s, a)

30

Algorithm 3: Q learning

For each pair (s, a), initialize Q(s,a)
Observe the current state s
Loop forever

{

Select an action a (optionally with €-exploration) and execute it

a = argmax Q(s, a)

Receive immediate reward r and observe the new state s’
Update Q(s,a)
Q(37 CL) — Q(Sv CL) =+ &[Tt—l—l + Y HZQXQ(Slv CL/) o Q(Sa a)]

’

S=s

31

Exploration

* Tradeoff between exploitation (control) and exploration
(identification)

 Extremes: greedy vs. random acting
(n-armed bandit models)

Q-learning converges to optimal Q-values if

— Every state is visited infinitely often (due to exploration),

A Success Story D

e TD Gammon (Tesauro, G., 1992) m

- A Backgammon playing program.

- Application of temporal difference learning.
- The basic learner is a neural network.

- It trained itself to the world class level by playing against
itself and learning from the outcome. So smart!!

33

What is special about RL?

RL is learning how to map states to actions, so as to maximize
a numerical reward over time.

Unlike other forms of learning, it is a multistage decision-
making process (often Markovian).

An RL agent must learn by trial-and-error. (Not entirely
supervised, but interactive)

Actions may affect not only the immediate reward but also
subsequent rewards (Delayed effect).

34

Summary

Both value iteration and policy iteration are standard
algorithms for solving MDPs, and there isn't currently
universal agreement over which algorithm is better.

For small MDPs, value iteration is often very fast and
converges with very few iterations. However, for MDPs with
large state spaces, solving for V explicitly would involve

solving a large system of linear equations, and could be
difficult.

In these problems, policy iteration may be preferred. In

practice value iteration seems to be used more often than
policy iteration.

Q-learning is model-free, and explore the temporal difference

Types of Learning

Supervised Learning
- Training data: (X,Y). (features, label)

- Predict Y, minimizing some loss.
- Regression, Classification.

Unsupervised Learning
- Training data: X. (features only)

- Find “similar” points in high-dim X-space.
- Clustering.

Reinforcement Learning
-Training data: (S, A, R). (State-Action-Reward)

- Develop an optimal policy (sequence of
decision rules) for the learner so as to
maximize its long-term reward.

- Robotics, Board game playing programs

36

