#### **Decision Trees, kNN Classifier**

Machine Learning 10-601B
Seyoung Kim

## **Beyond linearity**

- Decision tree
  - What decision trees are
  - How to learn them
- Nearest neighbor classifier

# **Decision Tree Learning**

#### **Problem Setting:**

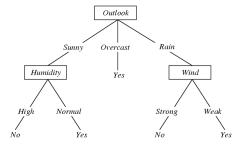
- Set of possible instances X, Y
  - each instance x in X is a feature vector  $x = \langle x_1, x_2 \dots x_n \rangle$
  - Y is discrete-valued
- Unknown target function  $f: X \rightarrow Y$
- Set of function hypotheses  $H = \{ h \mid h : X \rightarrow Y \}$ 
  - each hypothesis h is a decision tree

#### Input:

• Training examples  $\{\langle x^{(i)}, y^{(i)} \rangle\}$  of unknown target function f

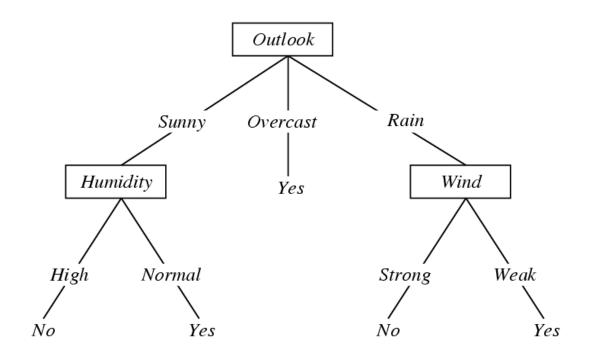
#### **Output**:

Hypothesis h∈ H that best approximates target function f



#### A Decision tree for

f: <Outlook, Humidity, Wind, Temp>  $\rightarrow$  PlayTennis?



Each internal node: test one discrete-valued attribute X<sub>i</sub>

Each branch from a node: selects one value for X<sub>i</sub>

Each leaf node: predict Y (or  $P(Y|X \in leaf)$ )

#### A Tree to Predict C-Section Risk

Learned from medical records of 1000 women Negative examples are C-sections

```
[833+,167-] .83+ .17-
Fetal_Presentation = 1: [822+,116-] .88+ .12-
| Previous_Csection = 0: [767+,81-] .90+ .10-
| | Primiparous = 0: [399+,13-] .97+ .03-
| | Primiparous = 1: [368+,68-] .84+ .16-
| | | Fetal_Distress = 0: [334+,47-] .88+ .12-
| | | Birth_Weight < 3349: [201+,10.6-] .95+ .000
| | Birth_Weight >= 3349: [133+,36.4-] .78+
| | Fetal_Distress = 1: [34+,21-] .62+ .38-
| Previous_Csection = 1: [55+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-
```

#### **Decision tree learning**



decision tree induction quinlan

Q

Scholar

About 28,100 results (0.05 sec)

**Articles** 

Case law

My library

#### Induction of decision trees

JR Quinlan - Machine learning, 1986 - Springer

Abstract The technology for building knowledge-based systems by inductive inference from examples has been demonstrated successfully in several practical applications. This paper summarizes an approach to synthesizing **decision trees** that has been used in a variety of ...

Cited by 16084 Related articles All 74 versions Cite Save More





- Often you can find a fairly accurate classifier which is small and easy to understand.
  - Sometimes this gives you useful insight into a problem
- Sometimes features interact in complicated ways
  - Trees can find interactions (e.g., "sunny and humid") that linear classifiers can't
- Trees are very inexpensive at test time
  - You don't always even need to compute all the features of an example.
  - You can even build classifiers that take this into account....
  - Sometimes that's important (e.g., "bloodPressure<100" vs</li>
     "MRIScan=normal" might have different costs to compute).

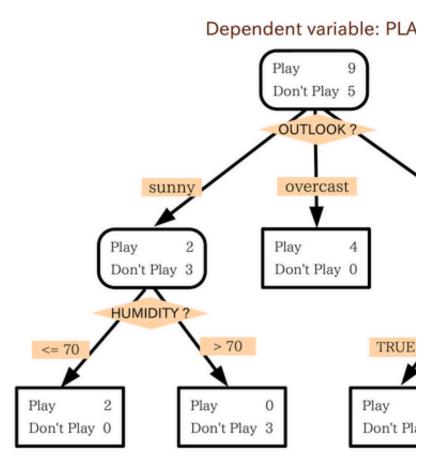
# **Decision Tree Learning Algorithm**

#### **Decision tree learning algorithms**

#### Given dataset D:

- return leaf(y) if all examples are in the same class y ... or nearly so
- pick the best split, on the best attribute a
  - *a* or *not(a)*
  - $a=c_1$  or  $a=c_2$  or ...
  - $a < \vartheta$  or  $a \ge \vartheta$
  - $a in \{c_1,...,c_k\}$  or not
- split the data into D<sub>1</sub>, D<sub>2</sub>, ... D<sub>k</sub>
   and recursively build trees for each subset

#### 2. "Prune" the tree



#### Most decision tree learning algorithms

#### Given dataset D:

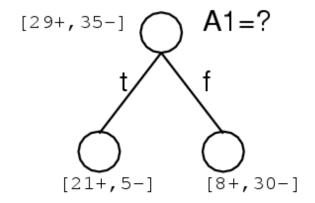
- return leaf(y) if all examples are in the same class y ... or nearly so...
- pick the best split, on the best attribute a
  - $a=c_1$  or  $a=c_2$  or ...
  - $a < \vartheta$  or  $a \ge \vartheta$
  - a or not(a)
  - $a in \{c_1,...,c_k\}$  or not
- split the data into D<sub>1</sub>, D<sub>2</sub>, ... D<sub>k</sub>
   and recursively build trees for each subset
- 2. "Prune" the tree

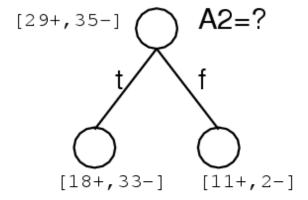
Popular splitting criterion: try to lower *entropy* of the *y* labels on the resulting partition

 i.e., prefer splits that have very skewed distributions of labels

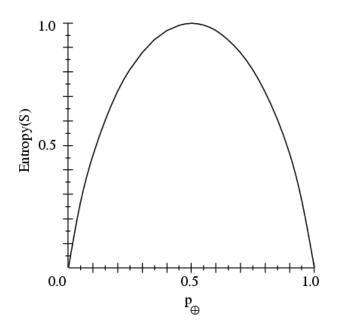
## **Picking the Best Split**

• Which attribute is the best?





## Sample Entropy



- $\bullet$  S is a sample of training examples
- $p_{\oplus}$  is the proportion of positive examples in S
- $p_{\ominus}$  is the proportion of negative examples in S
- $\bullet$  Entropy measures the impurity of S

$$H(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

# **Entropy**

# of possible values for X

Entropy H(X) of a random variable X

$$H(X) = -\sum_{i=1}^{n} P(X = i) \log_2 P(X = i)$$

H(X) is the expected number of bits needed to encode a randomly drawn value of X (under most efficient code)

Why? Information theory:

- Most efficient possible code assigns -log<sub>2</sub> P(X=i) bits to encode the message X=i
- So, expected number of bits to code one random X is:

$$\sum_{i=1}^{n} P(X = i)(-\log_2 P(X = i))$$

# **Entropy**

Entropy *H(X)* of a random variable *X* 

$$H(X) = -\sum_{i=1}^{n} P(X = i) \log_2 P(X = i)$$

Specific conditional entropy H(X|Y=v) of X given Y=v:

$$H(X|Y = v) = -\sum_{i=1}^{n} P(X = i|Y = v) \log_2 P(X = i|Y = v)$$

Conditional entropy H(X|Y) of X given Y:

$$H(X|Y) = \sum_{v \in values(Y)} P(Y = v)H(X|Y = v)$$

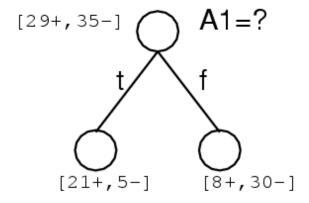
Mutual information (aka Information Gain) of X and Y:

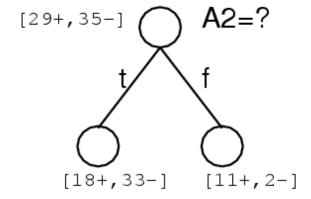
$$I(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

Information Gain is the mutual information between input attribute A and target variable Y

Information Gain is the expected reduction in entropy of target variable Y for data sample S, due to sorting on variable A

$$Gain(S, A) = I_S(A, Y) = H_S(Y) - H_S(Y|A)$$



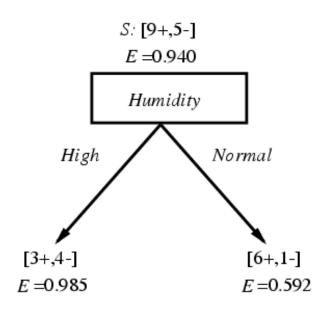


# Training Examples

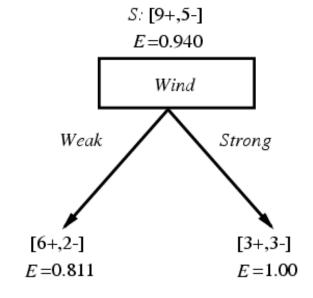
| Day | Outlook               | Temperature          | Humidity              | Wind   | PlayTenr |
|-----|-----------------------|----------------------|-----------------------|--------|----------|
| D1  | Sunny                 | Hot                  | High                  | Weak   | No       |
| D2  | Sunny                 | $\operatorname{Hot}$ | $\operatorname{High}$ | Strong | No       |
| D3  | Overcast              | $\operatorname{Hot}$ | $\operatorname{High}$ | Weak   | Yes      |
| D4  | Rain                  | Mild                 | $\operatorname{High}$ | Weak   | Yes      |
| D5  | $\operatorname{Rain}$ | Cool                 | Normal                | Weak   | Yes      |
| D6  | Rain                  | Cool                 | Normal                | Strong | No       |
| D7  | Overcast              | Cool                 | Normal                | Strong | Yes      |
| D8  | Sunny                 | Mild                 | $\operatorname{High}$ | Weak   | No       |
| D9  | Sunny                 | Cool                 | Normal                | Weak   | Yes      |
| D10 | Rain                  | Mild                 | Normal                | Weak   | Yes      |
| D11 | Sunny                 | Mild                 | Normal                | Strong | Yes      |
| D12 | Overcast              | Mild                 | $\operatorname{High}$ | Strong | Yes      |
| D13 | Overcast              | $\operatorname{Hot}$ | Normal                | Weak   | Yes      |
| D14 | Rain                  | Mild                 | $\operatorname{High}$ | Strong | No       |

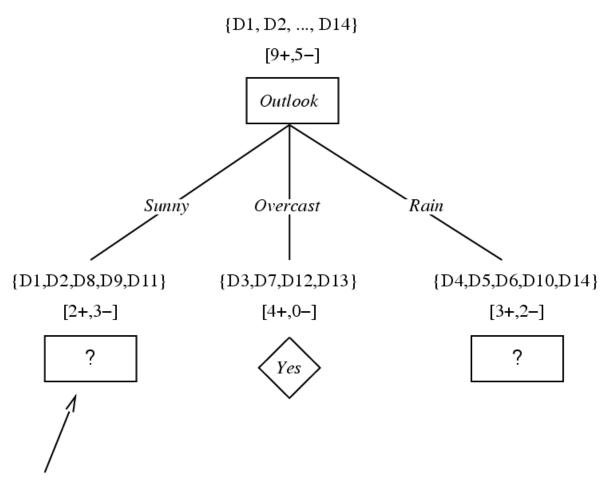
## Selecting the Next Attribute

#### Which attribute is the best classifier?



Gain (S, Humidity )
= .940 - (7/14).985 - (7/14).592
= .151





Which attribute should be tested here?

$$S_{sunny} = \{D1,D2,D8,D9,D11\}$$

$$Gain (S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$$

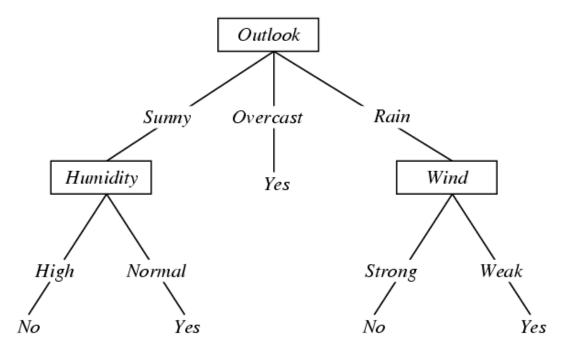
$$Gain (S_{sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$$

$$Gain (S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$$

#### Overfitting in Decision Trees

Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = NoWhat effect on earlier tree?



## **Overfitting**

Consider a hypothesis h and its

- Error rate over training data:  $error_{train}(h)$
- True error rate over all data:  $error_{true}(h)$

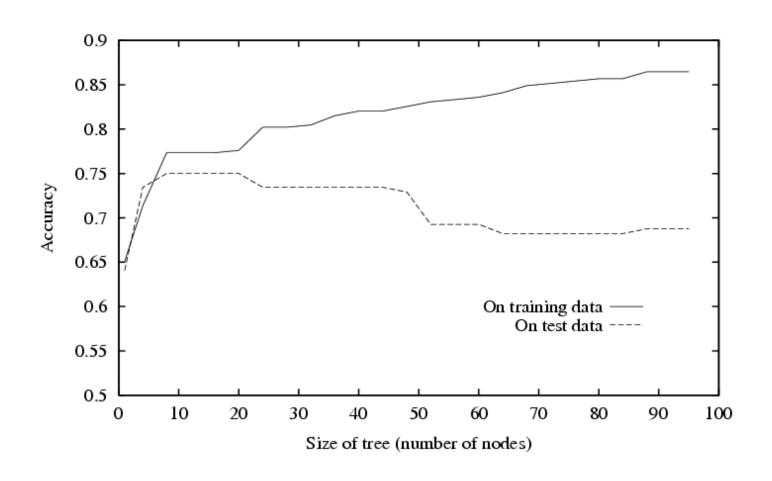
We say h overfits the training data if

$$error_{true}(h) > error_{train}(h)$$

Amount of overfitting =

$$error_{true}(h) - error_{train}(h)$$

## Overfitting in Decision Tree Learning



## Avoiding Overfitting

How can we avoid overfitting?

- stop growing when data split not statistically significant
- grow full tree, then post-prune

## Avoiding Overfitting

How can we avoid overfitting?

- stop growing when data split not statistically significant
- grow full tree, then post-prune

How to select "best" tree:

- Measure performance over training data
- Measure performance over separate validation data set
- MDL: minimize size(tree) + size(misclassifications(tree))

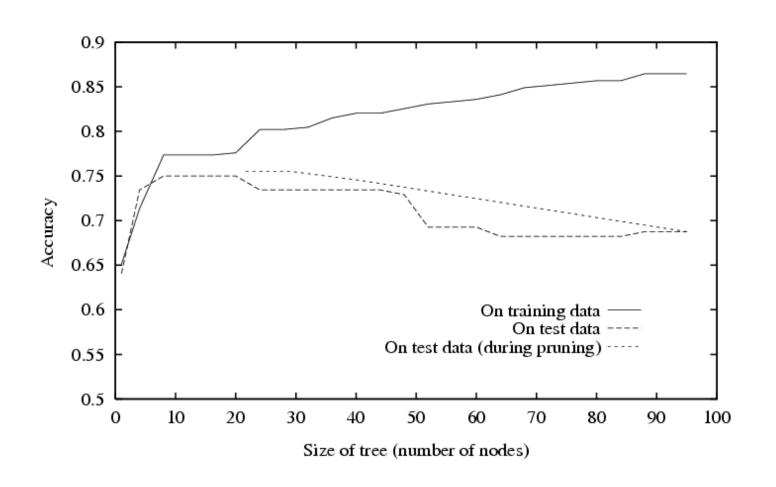
## Reduced-Error Pruning

Split data into training and validation set

Create tree that classifies *training* set correctly Do until further pruning is harmful:

- 1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)
- 2. Greedily remove the one that most improves validation set accuracy
  - produces smallest version of most accurate subtree
  - What if data is limited?

# Effect of Reduced-Error Pruning



#### Continuous Valued Attributes

Create a discrete attribute to test continuous

- $\bullet$  Temperature = 82.5
- (Temperature > 72.3) = t, f

Temperature: 40 48 60 72 80 90

PlayTennis: No No Yes Yes No

#### Attributes with Many Values

#### Problem:

- If attribute has many values, Gain will select it
- Imagine using  $Date = Jun_3_1996$  as attribute

One approach: use GainRatio instead

$$GainRatio(S,A) \equiv \frac{Gain(S,A)}{SplitInformation(S,A)}$$

$$SplitInformation(S, A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

where  $S_i$  is subset of S for which A has value  $v_i$ 

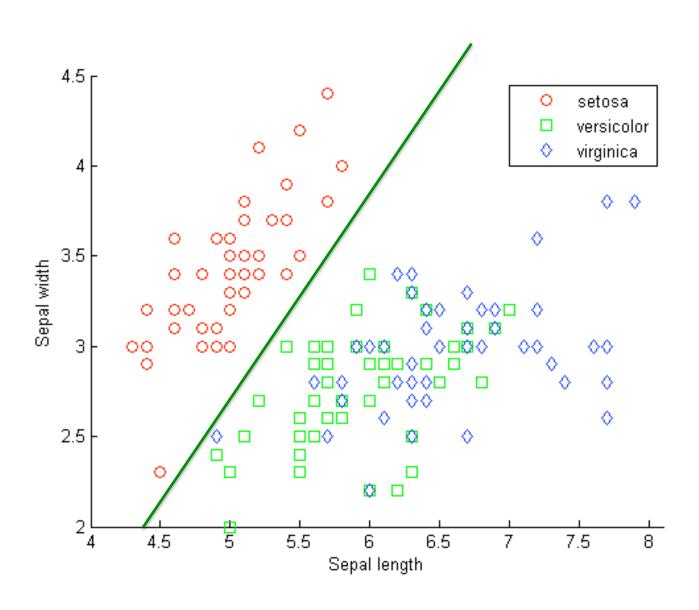
#### **Decision Tree and Linear Classifier**

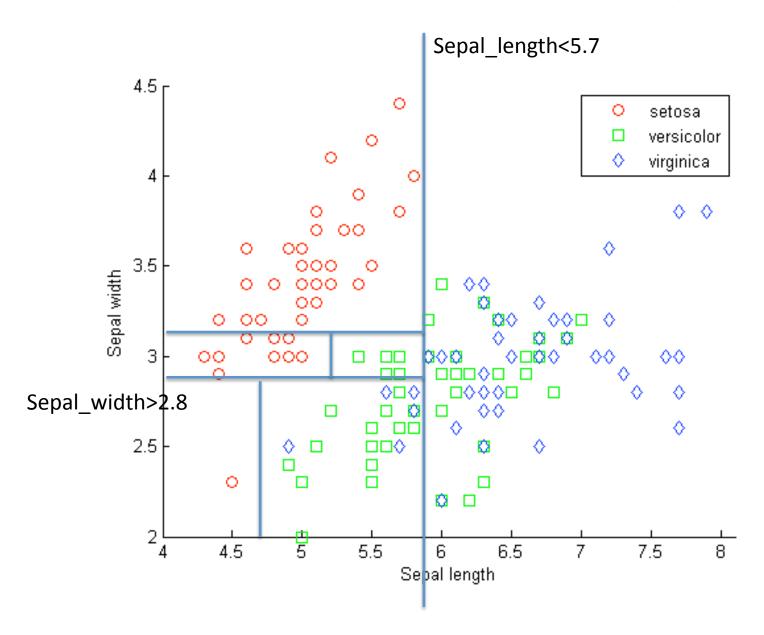
- Decision trees don't (typically) improve over linear classifiers when you have lots of features
- Sometimes fail badly on problems that linear classifiers perform well on
  - here's an example

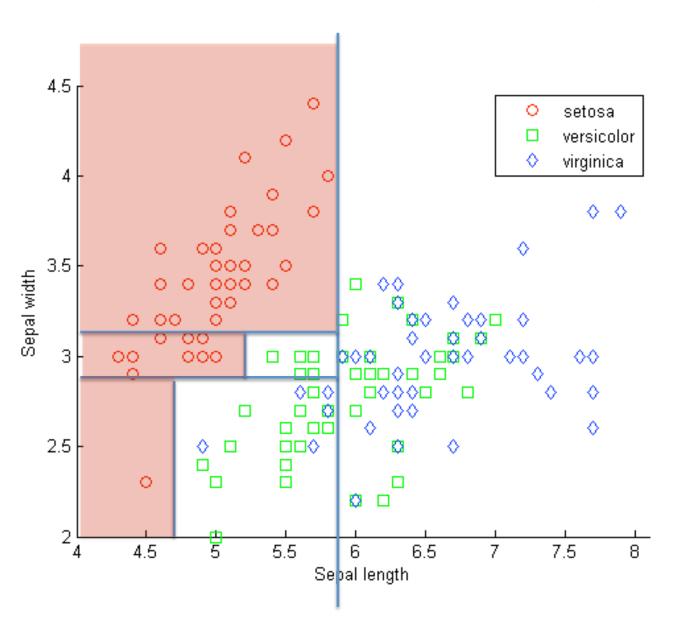


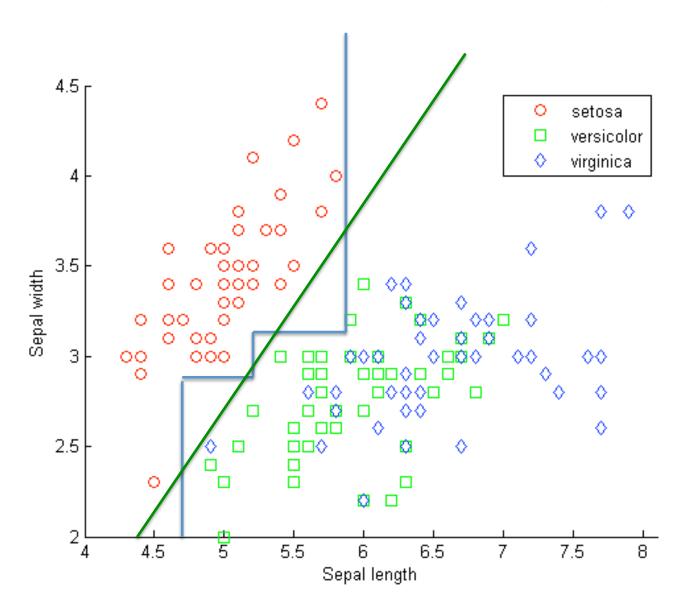












# Questions to think about (1)

 Consider target function f: <x1,x2> → y, where x1 and x2 are real-valued, y is boolean. What is the set of decision surfaces describable with decision trees that use each attribute at most once?

## Questions to think about (2)

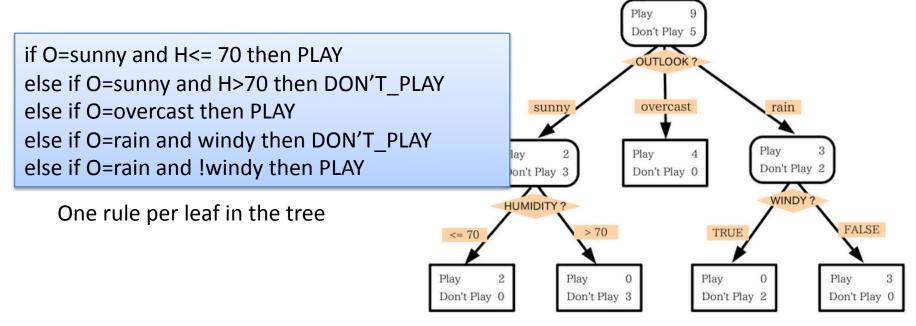
 What is the relationship between learning decision trees, and learning IF-THEN rules

#### One of 18 learned rules:

```
If No previous vaginal delivery, and
    Abnormal 2nd Trimester Ultrasound, and
    Malpresentation at admission
Then Probability of Emergency C-Section is 0.6
Over training data: 26/41 = .63,
Over test data: 12/20 = .60
```

## Questions to think about (3)

Dependent variable: PLAY

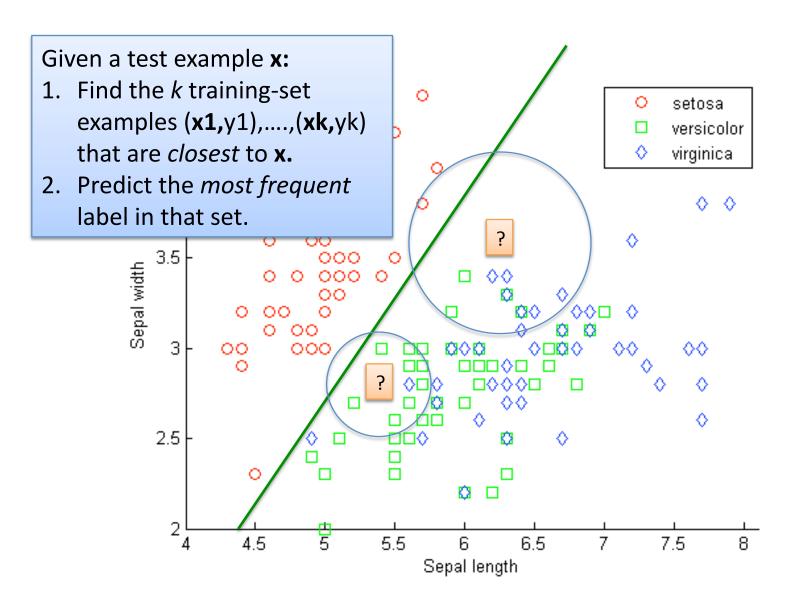


#### Simpler rule set

if O=sunny and H> 70 then DON'T\_PLAY else if O=rain and windy then DON'T\_PLAY else PLAY

**Nearest Neighbor Learning** 

## k-nearest neighbor learning



## **Breaking it down:**

- To train:
  - save the data
- To test:

Very fast!

...you might build some indices....

For each test example x:

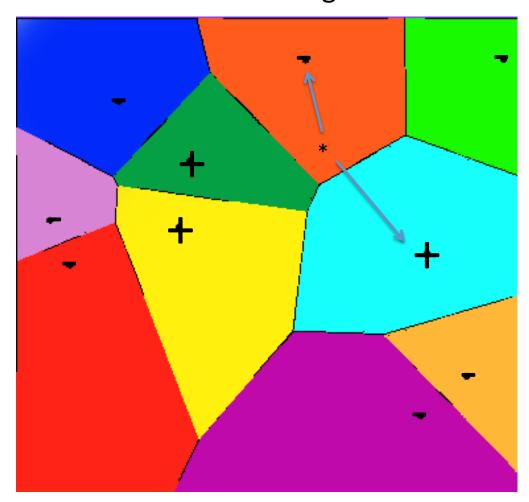
- 1. Find the *k* training-set examples (**x1**,y1), ....,(**xk**,yk) that are *closest* to **x**.
- 2. Predict the *most frequent* label in that set.

Prediction is relatively slow (compared to a linear classifier or decision tree)

## What is the decision boundary for 1-NN?

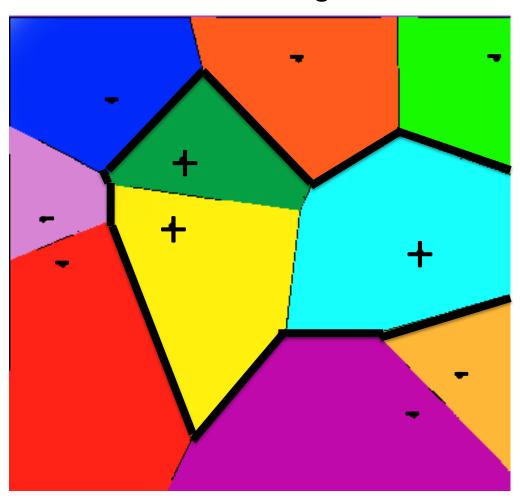
Voronoi Diagram

Each cell C<sub>i</sub> is the set of all points that are closest to a particular example **x**<sub>i</sub>

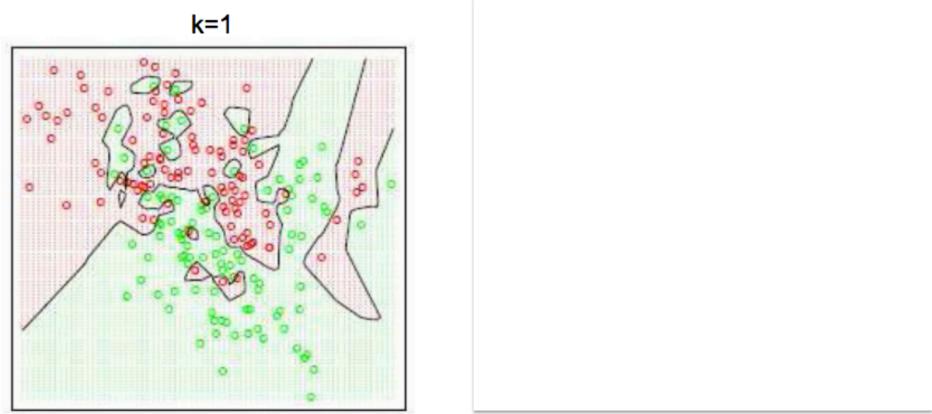


# What is the decision boundary for 1-NN?

Voronoi Diagram



## Effect of k on decision boundary



Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)

#### Some common variants

- Distance metrics:
  - Euclidean distance: ||x1 x2||
  - Cosine distance: 1 <x1,x2>/||x1||\*||x2||
    - this is in [0,1]
- Weighted nearest neighbor:
  - Instead of most frequent y in k-NN predict

$$\underset{(\mathbf{x}_{i},y)\in kNN(\mathbf{x})}{\operatorname{sim}}(\mathbf{x}_{i},\mathbf{x})$$

#### You should know:

- Well posed function approximation problems:
  - Instance space, X
  - Sample of labeled training data { <x<sup>(i)</sup>, y<sup>(i)</sup>>}
  - Hypothesis space, H = { f: X→Y }
  - Learning is a search/optimization problem over H
- Decision tree learning
  - Greedy top-down learning of decision trees (ID3, C4.5, ...)
  - Overfitting and tree/rule post-pruning
  - Extensions...
- kNN classifier
  - Non-linear decision boundary
  - Low-cost training, high-cost prediction