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How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e < 1, the probability that the
version space with respect to H and D is not

e-exhausted (with respect to ¢) is less than Any(!) learner
|H|e™™ that outputs

a hypothesis
Interesting! This bounds the probability that any consistent

consistent learner will output a hypothesis h with W'Th .a”
training

error(h) > € :
examples (i.e.,
an h
contained in

VSy,5)




What it means

[Haussler, 1988]: probability that the version space is not e-exhausted after m
training examples is at most |H|e™ <"

T

Suppose we want this probability to be at most 0
Pr[(3h € H)s.t.(errorirgin(h) = 0)A(erroryye(h) > ¢€)] < |Hle™ ™

1. How many training examples suffice?

m > 2(In|H| + In(1/5))



Agnostic Learning

So far, assumed ¢ € H
Agnostic learning setting: don’t assume ¢ € H
e What do we want then?

— The hypothesis h that makes fewest errors on
training data

e What is sample complexity in this case?
1
ﬁ

/

(In |H| +1In(1/6))

Here ¢ is the difference between the training error and true error
of the output hypothesis (the one with lowest training error)




Additive Hoeffding Bounds — Agnostic Learning

Given m independent flips of a coin with true Pr(heads) = 6

N

we can bound the error € in the maximum likelihood estimate @

Pr[o > 0 4+ e] < e_2m€2

Relevance to agnostic learning: for any single hypothesis h

2
Prlerrorirue(h) > errorypqin(h) + €] < e~ 2me

But we must consider all hypotheses in H

Pr[(3h € H)errorygye(h) > errorirqin(h)+e] < ‘H‘e—szQ

Now we assume this probability is bounded by 6. Then, we have

m >i2(1n|H | +1n(1/9))
E



m > 2(In |H| +In(1/5))

Question: If H = {h | h: X 2 Y} is infinite, what
measure of complexity should we use in place of
|H| ?



m > 2(In |H| +In(1/5))

Question: If H = {h | h: X 2 Y} is infinite, what
measure of complexity should we use in place of
|H| ?

Answer: The largest subset of X for which H can guarantee zero
training error (regardless of the target function c)



m > 2(In |H| +In(1/5))

Question: If H = {h | h: X 2 Y} is infinite, what
measure of complexity should we use in place of
|H| ?

Answer: The largest subset of X for which H can guarantee zero
training error (regardless of the target function c)

VC dimension of H is the size of this subset



Shattering a Set of Instances

a labeling of each
member of S as

Definition: a dichotomy of a set S is a | positive or negative

partition of S into two disjoint subsets.

Definition: a set of instances S is shattered
by hypothesis space H if and only if for every
dichotomy of S there exists some hypothesis
in H consistent with this dichotomy.

Instance space X

/
/

Each ellipse corresponds to a
possible dichotomy

Positive: Inside the ellipse

Negative: Outside the ellipse




The Vapnik-Chervonenkis Dimen-
sion

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = oc.

Instance space X

VC(H)=3




Sample Complexity based on VC dimension

How many randomly drawn examples suffice to g-exhaust VS, , with probability at
least (1-9)?

ie., to guarantee that any hypothesis that perfectly fits the training data is probably
(1-0) approximately (&) correct

m > ~(41095(2/5) + 8V C(H)10g5(13/6))

Compare to our earlier results based on |H|:

m > l(In(l/cS) + In|H|)



VC dimension: examples

Consider 1-dim real valued input X, want to learn c:X—=>{0,1}
What is VC dimension of *,

O O
o o

* Open intervals:
H1l: if £ > a then y =1 else y

H2: if x > a then y =1 else

O
O
or, if x > a then y = 0 else 1

e

 (Closed intervals:
H3: ifa<x<btheny=1¢else y=20

H4: ifa<x<btheny=1else y=20
or, i fa<zx<btheny=0e¢elsey=1



VC dimension: examples

Consider 1-dim real valued input X, want to learn c:X—=>{0,1}
What is VC dimension of *,

O O
o o

* Open intervals:

Hl: ifx >atheny=1¢else y=0 VC(H1)=1
H2: if  >a theny=1¢else y =0 VC(H2)=2
or, ifx>atheny=0¢lsey=1

 (Closed intervals:
H3: ifa<xz<btheny=1e¢else y=0 VCH3)=2

H4: ifa<x<bthen y=1else y=0 VC(H4)=3
or, i fa<zx<btheny=0e¢elsey=1



VC dimension: examples

What is VC dimension of lines in a plane?
* Hy={((wy+wx; +wyx,)>0 2> y=1) }

T



VC dimension: examples

What is VC dimension of
* H,={((Wy+wWXx; +W,x,)>0 2 y=1) }
— VC(H,)=3

* For H_ = linear separating hyperplanes in n dimensions,
VC(H,)=n+1



For any finite hypothesis space H, can you
give an upper bound on VC(H) in terms of |H|?
(hint: yes)

Assume VC(H) = K, which means H can shatter K examples.
For K examples, there are 2X possible labelings. Thus, |H|> 2K

Thus, K< log, |H|



Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data
perfectly is probably (1-0) approximately (€) correct?

m > ~(41095(2/5) + 8V C(H)10g5(13/6))

How tight is this bound?



Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data
perfectly is probably (1-0) approximately (€) correct?

m > ~(41095(2/5) + 8V C(H)10g5(13/6))

How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that VC(C) > 1, any learner L, any 0 < € < 1/8,
and any 0 < 0 <0.01. Then there exists a distribution and a target concept in C, such
that if L observes fewer examples than

Ve o) -1
32¢

1
max |—1og(1/§),
€

Then with probability at least 8, L outputs a hypothesis with errorp( h) > €



Agnostic Learning: VC Bounds for Decision Tree
[Scholkopf and Smola, 2002]

With probability at least (1-0) every h € H satisfies

VC(H)(IN 80y + 1) +In§

m

errorirye(h) < errory.qin(h)—+ J
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What You Should Know

Sample complexity varies with the learning setting
— Learner actively queries trainer
— Examples arrive at random

Within the PAC learning setting, we can bound the probability that learner will
output hypothesis with given error
— For ANY consistent learner (case where ¢ € H)

— For ANY “best fit” hypothesis (agnostic learning, where perhaps c not in H)

VC dimension as a measure of complexity of H

Conference on Learning Theory: http://www.learningtheory.org

Avrim Blum’s course on Machine Learning Theory:
— https://www.cs.cmu.edu/~avrim/ML14/




OVERFITTING, BIAS/VARIANCE
TRADE-OFF



What is a good model?

A
+ + 4
+ +
+
>

Low Robustness

/M
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Robust Model

Low quality /High Robustness

LEGEND

“\Model built

Known Data

New Data




Two sources of errors

* Now let's look more closely into two sources of errors in an
function approximator:
A

Total Error

Optimum Model Complexity

Variance

Error

- -
Model Complexity

* In the following we show how bias and variance decompose

23



Expected loss, Bias/Variance Decomposition

* Let y be the true (target) output
* Let /i(x) = E[y|x] be the optimal predictor

* Let f(x) our actual predictor, which will incur the following
expected loss

E(f(x) =) = [(F(x) =) plx,y)dxdy
= J(£G) = h(x)+ h(x) = y) plx.y)ddy
- f [( f(x) - h(x))2 +2(f(x) = h(x))(h(x) = y) + (A(x) - y)z]p(x,y)dxdy
= [(f ()= h(x)] px)edx + [(h(x) = y ] p(x, y)dxdy

The part we can influence by a noise term, and we can do no
changing our predictor f(x) better than this. Thus it is a lower
bound of the expected loss ”




Expected loss, Bias/Variance Decomposition

E(f(x)=y)" = [(f(x)=hx) peodx+ [ (h(x) - y) p(x.y)ddy

7 )

* fix;D): We will assume f(x) = f(x|w) is a parametric
model and the parameters w are fit to a training set D.
* E;[f(x;D)]: The expected predictor over the multiple
training datasets

Take the expectation over different datasets

El(f Dy -nyY F @[ D) ro) + E N7 00y - ES[r 0 )T
T T

Bias? Variance

25



Expected loss, Bias/Variance Decomposition

Proof:

EI(f (D) - ()1 = E,[(f(x:D) = B[ f(:D)]+ E,p[ £ (6:D)] = h(x)) |

= E,l(f(5:D) - Ep[f(i:D)]) +(E,[f(:D)] - h(x))
+2(f(0:D) - Ep[ f(:D)])( Ep[ £ (1:D)] - h(x))]

= (Ep[f(:D)] - h(x))2 + ED[(f(x;D) - ED[f(x;D)])z]
i T

Bias? Variance

e Putting things together:

expected loss = (bias)? + variance + noise



Error

Total Error

Variance

Optimum Model Complexity

Bias

5 >

Model Complexity

expected loss = (bias)? + variance + noise
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Regularized Regression

Recall linear regression: T
8 y=X f+¢

p =argmax,(y -X'p) (y - X' )
=argmax lly - X' B1IP

Regularized LR:
— L2-regularized LR:

where

f =argmax, lly - X" BIF +A 1l B
1Bl = B’

— L1-regularized,LR:

where

p =argmax, lly - X' BIF +A 1]

1BI= Y181

A controls bias/variance trade off




Bias2+variance vs regularizer

0.15

~

bias™
012+ variance

|
| T bias™ + variance
L) F
0.09 est error
e —

0.06

0.03

0 . .
-3 - -] () 1
In A

Bias2+variance predicts (shape of) test error quite well.

2 F
I~J

However, bias and variance cannot be computed since it relies on
knowing the true distribution of x and y (and hence A(x) = E[y|x]).
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Bayes Error Rate

 Fundamental performance limit for classification problem

 Alower bound on classification performance of any algorithms on a given
problem

* i.e., Error rate of the optimal decision rule



Bayes Error Rate: Two Class

* For a two-class classification problem
— X is input feature vector, and w,, w, are two classes
— Then, Bayes optimal decision rule is
* Classify as w, if
PXlw)P(w,) >Pxlw,)P(w,)
* Classify as w, if
PXxlw)P(w,) <Pxlw,)P(w,)

plx|w,)P(w;)
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Bayes Error Rate: Two Class

For a two-class classification problem
— X is input feature vector, and w,, w, are two classes

— Given this optimal decision rule, the error rate is
P(error) = P(XER,,w,)+ PXER,,w,)

=PXER, lw)P(w,)+PXER, |lw,)P(w,)

- [ P(xER,1w)P(w)dx+ [ P(XER, 10,)P(w,)dx

plx|w;)P(w;)

Bayes error rate gives
the irreducible error:
fundamental property
of the problem, not the

_—(_"_‘_______L_‘;‘L 0% 3 1A
——————— — . classifier
| xg X* R,

——————————— e

| 4

/ l'\
J-p(.\'}u,'3 )P(w,) dx~ J p(xlw,;)P(w,) dx 32
R, R,



Classification Example

* Simple problem

 Hard problem




Bayes Error Rate: Multiple Classes

For c-class classification

P(correct) = EP(X ER,,w,)

i=1

- SP(X ER lw,)P(w))

Cc

=Y [ P(xER,10)P(0,)dx

i=1 R2

P(error) =1- P(correct)



Summary

e Qverfitting

* Bias-variance decomposition
* Bayes Error Rate



