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In the this lecture, we will implement a program that plays any two-player, deterministic,
perfect-information, finitely branching, zero-sum game. The minimax algorithm for playing such
games is a standard example in AI, and we will implement it in SML. In fact, that algorithm
is the basis for many ideas in automated planning and machine learning. Generalizations of the
algorithm described here apply in settings with imperfect information and uncertain outcomes,
such as planning the motions and actions of a robot.

The code development in this lecture provides a nice use of modules, and in particular an elegant
application of functors for code re-use.

1 Overview

Games

What is a two-player, deterministic, perfect-information, finitely branching, zero-sum game?

• “Two-player” means the game is played by two players who alternate taking turns.

• “Deterministic” means that each move has a well-defined outcome; there is no randomness
(no luck, no rolling the dice).

• “Perfect-information” means that, at any given moment, both players know the complete
state of the game; there is no hidden information.

• “Finitely branching” means that there are only a finite number of allowed moves at each stage
of the game.

• “Zero-sum” means that if I win, you lose, and vice versa—what’s good for me is bad for you.
Draws are allowed.

Examples include tic-tac-toe, Nim, chess, checkers, Connect 4, Mancala, and Gomoku. By way
of contrast, poker is not a perfect-information game, because neither player knows the cards held
by the other and because there is randomness in the draws.

∗Adapted from documents by Stephen Brookes and Dan Licata.
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Nim

Let’s illustrate with Nim: Let’s start with 15 pieces. You make the first move: you pick up 1, 2, or
3 pieces. Then it’s my turn. I have to pick up 1, 2, or 3 pieces. Then it is your turn again. And
so forth. Whoever picks up the last piece loses.

Here is an example:

We start with 15 pieces
You pick up 3 (12 pieces left)
I pick up 3 (9 left)
You pick up 2 (7 left)
I pick up 2 (5 left)
You pick up 1 (4 left)
I pick up 3 (1 left)
You pick up 1 (0 left)
I win!

In fact, Nim with 15 pieces has a winning strategy for whoever goes first: To understand this,
let’s suppose we are down to 5 pieces. If it is your turn, and there are 5 pieces left, then you lose:
go ahead and try it. If you take 1, I take 3, and there is 1 left. If you take 2, I take 2. If you
take 3, I take 1. No matter what you do, there is 1 left on your next turn. Similarly, if there are 9
pieces left and it is your turn, then I can ensure that on your subsequent turn there will be 5 pieces
left, similarly from 13 to 9, etc. What is the pattern? If it is your turn, and the number of pieces
(mod 4) is 1, then I have a winning strategy. So I choose my move to always leave the number of
pieces congruent to 1 (mod 4).

Nim is special, in that I can do a quick calculation that tells me who will win. For chess, one
can not tell (in constant time) just by looking at the board who will win. So, if you were writing
a program to play it, what would you do? Use your computational resources to explore possible
future states!

Game Trees

To explore possible futures in a game, one imagines a game tree. The tree’s nodes represent game
states and its edges represent game moves. Each layer in the tree is labeled with the name of the
player whose turn it is in all the states at that level. In what fallows, we will call the players Maxie
and Minnie to emphasize the role of maximization and minimization in the upcoming minimax
algorithm. The SML code implementing this algorithm won’t actually build trees like this; instead,
it will explore possible futures recursively, in a way that mimics the tree structure.

Again, let’s illustrate with Nim, starting with 3 pieces to keep the tree small enough to see well.

3 Maxie
/ | \

2 1 0 Minnie
/ \ |

1 0 0 Maxie
|
0 Minnie
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The nodes are Nim states (number of pieces), and each downward edge represents the effect of
making a Nim move at a state (i.e., removing 1, 2, or 3 pieces).

We want to assign to each state a value which tells us who (eventually) wins from that state.
We use the value 1 to indicate a win for Maxie, and −1 to indicate a win for Minnie.

First, we label the leaves. Leaf nodes for Nim have 0 pieces. If there are 0 pieces left, and it’s
my turn, then you took the last one, so I won. We’ll put ? in nodes to which we have not yet
assigned a value.

(3,?) Maxie
/ | \

(2,?) (1,?) (0,-1) Minnie
/ \ |

(1,?) (0,1) (0,1) Maxie
|

(0,-1) Minnie

Next, we propagate these values up the tree. If it’s Maxie’s turn at a node, then the value is the
maximum value of the children, assuming all children have been assigned values. If it’s Minnie’s
turn, we take the minimum.

First level: (we propagate from the deepest leaf to its parent node)

(3,?) Maxie
/ | \

(2,?) (1,?) (0,-1) Minnie
/ \ |

(1,-1) (0,1) (0,1) Maxie
|

(0,-1) Minnie

Next level:

(3,?) Maxie
/ | \

(2,-1) (1,1) (0,-1) Minnie
/ \ |

(1,-1) (0,1) (0,1) Maxie
|

(0,-1) Minnie

After this step we see in the leftmost child tree that if there are 2 pieces left, Minnie should take 1,
rather than 2: taking 1 piece leads to state (1,−1) whose value −1 says that Minnie wins, whereas
taking 2 pieces leads to a state that is a win for Maxie.

Finally, top level:

(3,1) Maxie
/ | \

(2,-1) (1,1) (0,-1) Minnie
/ \ |

(1,-1) (0,1) (0,1) Maxie
|

(0,-1) Minnie
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The information at the root now says that when starting with 3 pieces Maxie should take 2 pieces
in order to win, leaving 1, rather than taking 1 piece or 3 pieces.

Exercise: draw and label the Nim game tree starting from 5 pieces.

What the minimax algorithm (as illustrated above) computes is the value of a game state,
assuming both players will play optimally. It does not account for imponderables like “if I do this,
the chess board will look more confusing, so I think you’re likely to make a mistake”.

In a game with a bigger search space, we cannot draw out the whole tree, or expand out the
recursive calls forever! Instead, we will write a heuristic that looks at states and approximate their
value. For Nim, there is a perfect heuristic: is the number of pieces congruent to 1 modulo 4? For
chess, a useful heuristic would take account of which pieces are left, where they are positioned,
etc. This is where the smarts in playing a particular game come in. Then, the overall algorithm
for selecting a move is to (a) explore the game tree up to a certain depth, (b) use the heuristic to
approximate node values at that depth, and (c) propagate those values back up to the root of the
tree as we just did using the minimax algorithm.

2 Game Architecture

The process of minimax game tree searching is independent of the particular game. Moreover, the
process of putting together a run of a game, given two players, is independent of the game and the
players. We represent this by defining some signatures:

signature GAME
signature PLAYER

We can define various GAMEs, like Chess, Connect 4, Mancala, Othello. We can define other types of
“players”, that is, search algorithms, beyond the minimax described above. For instance, alpha-beta.
This is a search algorithm that prunes parts of the search space that are known to be suboptimal.
We can also set up our interface to include a human player. Each such player will have a generic
component that can play any game, and a heuristic component specific to the particular game
being played. And we can also define a generic referee that puts two players together and runs a
game. This is an example of modular program design, where we will use functors to achieve good
code reuse. And it is an application-specific illustration of modules.

3 Games

Let’s start with the signature for a game. As usual, we assume that we have a structure Seq:SEQUENCE
implementing sequences.

signature GAME =
sig

datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In_play

type state (* abstract, representing states of the game *)
type move (* abstract, representing moves of the game *)
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val start : state

(* REQUIRES: m is in moves(s) *)
(* ENSURES: make_move(s,m) returns a value. *)
val make_move : state * move -> state

(* The next three functions are "views" of the abstract types state and move. *)

(* REQUIRES: status(s) == In_play *)
(* ENSURES: moves(s) returns a nonempty sequence of moves legal at s. *)
val moves : state -> move Seq.seq

val status : state -> status
val player : state -> player (* says whose turn it is to make a move *)

datatype est = Definitely of outcome | Guess of int

(* REQUIRES: status(s) == In_play *)
(* ENSURES: estimate(s) returns a value. *)
val estimate : state -> est

[plus helper functions useful for input/output, omitted ]

end

In words, a game structure ascribing to the GAME signature must provide:

• A datatype of two players, with standard names Maxie and Minnie. This is a feature of
signatures that we haven’t exploited previously: you can put a datatype definition in a
signature, in which case clients have access to the constructors. These constructors may be
used to create values and for pattern-matching. Also in order to implement this signature
you must declare exactly the same datatype.

• Two datatypes status and outcome whose values tell you whether the game is over, and, if it
is, what the outcome was. These types are again datatypes with standard (not game-specific)
constructors (Over and In_play for status; Winner and Draw for outcomes).

• An abstract type state whose values represent game states, including the board, whose turn
it is, etc.

• An abstract type move representing an action a player can take.

• A start state start.

• A transition function make_move that applies a move to a state, returning the resulting state.
The move must be an action allowed at the state.

• A function moves that computes the sequence of allowed actions at a given state.
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• A function status that tells us if a game state represents a completed game, and if so, what
the outcome was.

• A function player that tells us whose turn it is in a given state.

These last three functions are called views, because they allow us to see information about
values of the abstract types state and move.

• A game comes with a type est and a function estimate, that approximates the value of a
state. An estimation produces either Definitely an outcome, or a Guess of an integer; a
positive guess indicates “better for Maxie”, whereas a negative guess indicates “better for
Minnie”. The magnitude of a guess indicates how favorable the estimate looks.

We regard estimate values as an ordered type, with a greater-than ordering based on the
following:

Definitely (Winner Maxie) >
Guess(some positive number) >
Guess(0) and Definitely Draw >
Guess(some negative number) >
Definitely (Winner Minnie)

Comment: We have placed the estimator inside GAME for simplicity in this introductory
lecture. More generally, one would want to place it in a separate signature/structure.

• Finally, a game comes with some parsing and printing functions, omitted here.

Multiple abstract types at once: Note that this signature defines two abstract types, for
states and moves, at once. The implementation must be privy to both at once, and clients don’t
need to know either. This is perfectly natural in SML, but difficult in some languages.

4 Nim

Here is an implementation of Nim, eliding the parsing and printing code. Since we already saw
that there is a simple way to figure out how to win at Nim, we build into this implementation a
“genius” estimator that never needs to guess!

The code makes use of SML’s predefined exception Fail that can be raised with a string
argument, useful for returning error messages.

structure Nim : GAME =
struct

datatype player = Maxie | Minnie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In_play

datatype state = State of int * player
(* The integer component is the number of pieces left. *)
(* The player component is who should take pieces next. *)
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datatype move = Move of int
(* The integer is how many pieces to pick up. *)

val start = State (15, Maxie)
(* Initial state for Nim has 15 pieces, Maxie goes first. *)

fun flip Maxie = Minnie
| flip Minnie = Maxie

(* flip : player -> player *)
(* Switches the player from Maxie to Minnie or vice versa. *)

fun make_move (State (n, p), Move k) =
if (n >= k) then State (n - k, flip p)

else raise Fail "tried to make an illegal move"

fun moves (State (n , _)) = Seq.tabulate (fn k => Move(k+1)) (Int.min(n,3))

fun status (State (0, p)) = Over(Winner p)
| status _ = In_play

(* Nim is over when no pieces are left. *)
(* When game ends, whoever would have moved next is the winner. *)

fun player (State (_, p)) = p

datatype est = Definitely of outcome | Guess of int

fun estimate (State (n, p)) =
if n mod 4 = 1 then Definitely (Winner (flip p))

else Definitely (Winner p)
(* If there are n pieces left, with n=1 (mod 4), then the player

whose turn it is must lose, assuming optimal play by opponent.
Otherwise, that player can win. *)

[parsing and printing, omitted]
end

• To satisfy a datatype declaration in a signature, you put the same datatype declaration in
the structure. Pretty boring, but necessary.

• A state is represented by a pair. The first component of the pair is an integer – the number of
pieces left. The second component of the pair is the player whose turn it is to remove pieces.
A move is represented by an integer (which must be 1, 2, or 3), describing the number of
pieces to remove.

• The types state and move are defined to be datatypes that aren’t exported, so they are
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abstract. This way, no one can accidentally make an invalid state (e.g., “there are ~17 pieces
left”).

• The start state is 15 pieces and Maxie’s turn.

• For make_move: to apply a move, we just subtract (the move is assumed to be valid).

• For moves: if there are fewer than three pieces, one may only take up to the number left;
otherwise one may take 1, 2, or 3.

• For status: if there are no pieces left, the game is over, and the player whose turn it is wins,
because whoever took the last piece loses.

• For player: this reports the player whose turn it is. If we forget to put the player in the
state, then we would not be able to implement this function. Moral: the operations to be
provided place demands on the implementation of abstract types.

• The estimator just calculates modulo 4, and says who is definitely going to win. For Nim,
the estimator never makes a Guess! In more typical games, where there may not be an easily
discoverable winning strategy.

To see how the SML structure Nim corresponds to our earlier discussion of Nim game trees,
recall the game tree we drew then:

(3,1) Maxie
/ | \

(2,-1) (1,1) (0,-1) Minnie
/ \ |

(1,-1) (0,1) (0,1) Maxie
|

(0,-1) Minnie

Using the functions defined in the Nim structure, we have the following facts, each of which has a
pictorial echo in this tree drawing. (We use the angle-bracket notation for sequences.)

• moves(State(3, Maxie)) = <Move 1, Move 2, Move 3>

• moves(State(0, Minnie)) = <>

• make_move(State(3, Maxie), Move 2) = State(1, Minnie)

• status(State(0, Minnie)) = Over(Winner Minnie)

• estimate(State(3, Maxie)) = Definitely(Winner Maxie)

• estimate(State(2, Minnie)) = Definitely(Winner Minnie)

• estimate(State(1, Maxie)) = Definitely(Winner Minnie)

Shortly, we will implement the minimax algorithm using recursive functions, rather than with
a perfect estimator. It will turn out that our implementation calculates the same values for states
as the ones appearing in the tree drawing above.
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5 Dumb Nim

Just for contrast, and for later when we implement bounded minimax players, the next page shows
a “bad” implementation of the Nim game (with the same implementation of the types and game
operations) in which the estimator is almost useless. The code is exactly the same as the structure
called Nim above, except for the estimate function.
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structure DumbNim : GAME =
struct

datatype player = Maxie | Minnie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In_play

datatype state = State of int * player
(* The integer component is the number of pieces left. *)
(* The player component is who should take pieces next. *)

datatype move = Move of int
(* The integer is how many pieces to pick up. *)

val start = State (15, Maxie)
(* Initial state for Nim has 15 pieces, Maxie goes first. *)

fun flip Maxie = Minnie
| flip Minnie = Maxie

(* flip : player -> player *)
(* Switches the player from Maxie to Minnie or vice versa. *)

fun make_move (State (n, p), Move k) =
if (n >= k) then State (n - k, flip p)

else raise Fail "tried to make an illegal move"

fun moves (State (n , _)) = Seq.tabulate (fn k => Move(k+1)) (Int.min(n,3))

fun status (State (0, p)) = Over(Winner p)
| status _ = In_play

(* Nim is over when no pieces are left. *)
(* When game ends, whoever would have moved next is the winner. *)

fun player (State (_, p)) = p

datatype est = Definitely of outcome | Guess of int

(* This estimator is intentionally fairly dumb. *)
fun estimate (State (1, p)) = Definitely (Winner (flip p))

| estimate _ = Guess 0
(* If there is exactly 1 piece left, then the player

whose turn it is must lose. Otherwise, guess a draw. *)

[parsing and printing, omitted]
end

10



6 Views

The functions player and status are examples of views: functions that map an abstract type (in
this case state) into values of a datatype revealed by the signature, so that one may see it and use
it. This kind of pattern-matching on values derived from abstract types is very useful, so let’s look
at some other instances of it.

As we have discussed many times, list operations have bad parallel complexity, but the cor-
responding sequence operations are much better. However, sometimes one may want to write a
sequential algorithm (e.g., because the inputs aren’t very big, or because no good parallel algorithms
are known for the problem). As we have discussed the sequence interface so far, it is difficult to
decompose a sequence as “either empty, or a cons with a head and a tail.” To implement such a
construct using the sequence operations we discussed previously, you would have to write code that
would surely lose style points, such as:

(case Seq.length s of
0 =>

| _ => ... (Seq.nth s 0) ... (Seq.tabulate (fn i => Seq.nth s (i+1)) ...) ...)

It would be more desirable to use patterns to bind variables to pieces of s, as in

(case s of
Nil => ...

| Cons(x,s’) => ...)

but we cannot pattern-match on s since its value belongs to an abstract type.

We can address this problem using a view. This means that we put an appropriate datatype
in the signature, along with functions converting sequences to and from this datatype. This allows
us to pattern-match on an abstract type, while keeping the actual representation abstract. (By
analogy, we put datatypes player, outcome, status in the signature GAME, as well as the functions
player and status. Consequently, a client can pattern-match on some components of a game
state, such as Maxie versus Minnie, without needing access to the full abstract state.

For sequences we have extended the SEQUENCE signature with the following components to
enable viewing a sequence as a list:

datatype ’a lview = Nil | Cons of ’a * ’a seq
val showl : ’a seq -> ’a lview
val hidel : ’a lview -> ’a seq

(* ENSURES: showl (hidel v) ∼= v, hidel (showl s) ∼= s. *)
(* ENSURES: showl s ∼= Nil if s is an empty sequence. *)
(* ENSURES: showl s ∼= Cons(v, s’) if nth s 0 ∼= v and s’ is the tail of s. *)

Because the datatype definition is in the signature, the constructors can be used outside the ab-
straction boundary. The showl and hidel functions convert between sequences and list views.
Here is an example of using this view to perform list-like pattern matching:

(case Seq.showl s of
Seq.Nil => ...

| Seq.Cons (x, s’) => ... uses x and s’ ...)
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lview exposes that a sequence is either empty or has a first element and a rest (or tail). The tail
is another sequence, not an lview—for efficiency, we don’t want to convert the whole sequence to
a list just to peek at the first element. Thus, showl lets you do one level of pattern matching at a
time: you can write patterns like Seq.Cons(x,s’) but not Seq.Cons(x,Seq.Nil).

We have also provided hidel, which converts a view back to a sequence.

Note that Seq.hidel(Seq.Cons(x,s’)) is equivalent to (Seq.cons x s’).
Similarly, Seq.hidel(Seq.Nil) is equivalent to Seq.empty(). This relationship may be used as
the basis for an induction principle for sequences, enabling us to reason about sequences inductively,
as if they were lists. For example:

Let t be a type and P: t Seq.seq -> bool be a predicate.
To prove “For all s : t Seq.seq, P(s)”, it suffices to show

(a) P(Seq.hidel(Seq.Nil))

(b) For all x : t and s’ : t Seq.seq,
if P(s’) then P(Seq.hidel(Seq.Cons(x,s’)))

We have also endowed SEQUENCE with a tree view that lets one pattern match on a sequence as
if it were a tree.

datatype ’a tview = Empty | Leaf of ’a | Node of ’a seq * ’a seq
val showt : ’a seq -> ’a tview
val hidet : ’a tview -> ’a seq
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7 The GAME signature again

Recall:

signature GAME =
sig

datatype player = Minnie | Maxie
datatype outcome = Winner of player | Draw
datatype status = Over of outcome | In_play

type state (* abstract, representing states of the game *)
type move (* abstract, representing moves of the game *)

val start : state

(* REQUIRES: m is in moves(s) *)
(* ENSURES: make_move(s,m) returns a value. *)
val make_move : state * move -> state

(* REQUIRES: status(s) == In_play *)
(* ENSURES: moves(s) returns a nonempty sequence of moves legal at s. *)
val moves : state -> move Seq.seq

val status : state -> status
val player : state -> player (* says whose turn it is to make a move *)

datatype est = Definitely of outcome | Guess of int

(* REQUIRES: status(s) == In_play *)
(* ENSURES: estimate(s) returns a value. *)
val estimate : state -> est

[plus helper functions useful for input/output, omitted ]
end

We say that a move m is legal at state s if m is in the sequence moves(s). The specs say that:
(i) performing a legal move at a state does return a new state, i.e., it does not raise an exception
or loop forever; (ii) at every in-play state there is at least one legal move; and (iii) the estimate
function always returns a value when applied to an in-play state.

We previously introduced a structure Nim:GAME with a perfect estimator and DumbNim:GAME
with a nearly useless estimator.

Now we will talk about playing games more generally: We will implement players that use
various versions of the minimax algorithm to figure out the best moves to make. We will introduce
referees as mechanisms that allow players to interact and actually play games.
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8 Players

A player for a game is just a game equipped with a function that picks a next move for any in-play
state:

signature PLAYER =
sig

structure Game : GAME (* parameter *)

(* REQUIRES: Game.status(s) == In_play *)
(* ENSURES: next_move(s) evaluates to a Game move legal at s. *)
val next_move : Game.state -> Game.move

end

Again note the comments in the signature, which we regard as guidance to be followed by all
implementations of this signature. Thus, implementors of players should be careful to only ever
call the next_move function on a state that is in-play for the game in question.

9 Implementing Players

First, we will implement an unbounded (full) minimax algorithm that works in the same way that
we labeled the game tree for Nim earlier. It works in principle for any game for which game trees
are finitely deep, although the runtime may still be prohibitive if game trees are big. Then we will
modify this algorithm to obtain a depth-bounded minimax player that searches up to a fixed depth
and uses an estimator instead of exploring deeper.

9.1 Unbounded Minimax

Let’s implement a generic player for games that always uses minimax to decide on the best move
to take: this is an unbounded use of the minimax algorithm. Instead of building game trees,
the algorithm is implemented using recursive functions from states to moves and from states to
estimates. In figuring out the best move at one state (best for the player whose turn it is), we
make recursive calls to find the best moves for the other player at states reachable by single moves.
This recursive flow of control mimics the bottom-up propagation of values we discussed previously.
Moreover, we will discover that it is very natural to define two functions, one for state evaluation
and one for move selection, each of which calls the other; this is known as a pair of mutually
recursive functions. SML supports mutual recursion.

Keeping track of moves and values: At first cut, one might write a function to evaluate each
game state and return its value, propagating the values of reachable states up the game tree, as
we did in class. However, at the very top level, one needs to know not only the value of the state,
but also the corresponding optimal move. Much of the code needed for move selection is going
to resemble the code that implements the evaluation function. To avoid code duplication, we will
use a function that calculates this best-move information at any state (even though we may only
need it at the initial state): this function computes for each state both its value and the move that
ensures that value. We call such a pair (a move and a value) an edge, by analogy with the structure
of the game tree.
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Functors: Since the idea of minimax makes sense for any game, not just for Nim, we encapsulate
this idea by means of a functor (Figure 1). Beware, however, that it would be a bad idea to use
this functor to build a player for a game with infinite game trees!

reduce1: We will use a variant form of the reduce operation on sequences, because we only ever
need to use it in this code to take the maximum or minimum over a non-empty sequence. (In-play
states always have at least one move out of them.) In cases like this there is no need to supply a
base case value to the reduce operation. We have included in the SEQUENCE signature the following
function:

reduce1 : ((’a * ’a) -> ’a) -> ’a seq -> ’a

with the following specification, assuming that g is associative: (recall that we use the notation �
to describe g as if it were infix)

reduce1 g 〈x1, . . . xn〉 ∼= x1 � x2 � . . . � xn.

Parallelism: Note the opportunities for parallelism in implementing minimax: at each level, one
may explore each next state in parallel, and combine the results together, with span logarithmic
in the number of possible moves, even though the work is linear in the number of moves. (That’s
why we use sequences here rather than lists.)

Estimator values: Recall that GAME comes with a type est and a function estimate which pro-
vides an approximation to the potential value of a state. An estimation produces either Definitely
an outcome, or a Guess of an integer; a positive guess indicates “better for Maxie”, whereas a neg-
ative guess indicates “better for Minnie”. The magnitude of a guess indicates how favorable the
estimate looks. The sign of an estimate for a given state is absolute, i.e., not relative to the player
whose turn it is in that state. We regard the type of estimate values as an ordered type, with a
greater-than ordering based on the following:

Definitely (Winner Maxie) >
Guess(some positive number) >
Guess(0) and Definitely Draw >
Guess(some negative number) >
Definitely (Winner Minnie)

Comments: (a) The unbounded minimax player will never make any guesses, no matter what
the game is, but the depth-bounded minimax player will make guesses via its estimator. (b) The
estimator appears inside GAME for simplicity in this lecture. More generally, one would want to
place it in a separate signature/structure.

This ordered type neatly generalizes the “−1 is less than +1” fact that we exploited in class last
time, when explaining how taking the maximum and minimum labels at a node were appropriate;
previously +1 was used for “Maxie wins” and −1 for “Minnie wins”. Note that the estimate value
Guess 0 is tantamount to Definitely Draw, since these two values occupy the same position in
terms of this ordering, and there is no way to gain extra information from one or the other.

In the functor body, the function lesseq : G.est * G.est -> G.est implements this ordering,
and is used to obtain the relevant max and min functions for edges, based on estimates. (Here G
is the current game implementation; it is a structure argument to the functor and it ascribes to
signature GAME.)

Of course, there is nothing particularly significant about this value space for the estimator. In
a different implementation, one might use reals or other datatypes.
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Searching and Evaluating

The function search takes a state and chooses the max/min edge out of the state (as appropriate
for the player in that state). To compute all the edges, we pair each allowed move with the value
of the state resulting from the move, as computed by the helper function evaluate. To evaluate
a state, we return the actual outcome if the state is Over, or call search again, followed by an
application of the little helper function edgeval that forgets the move component. We started off
writing evaluate as a helper for search, but now evaluate calls search too. This is an example
of what is called mutual recursion: two functions, each of which calls the other. This isn’t so
different conceptually from a function calling itself recursively, but it is sometimes more convenient
to express an algorithm this way. To indicate mutually recursive definitions, one writes and instead
of fun for the second definition. In general, one can declare two, three, . . . , as many as one needs,
mutually recursive functions, using and to link the definitions, as in

fun f1(x1) = e1
and f2(x2) = e2
and f3(x3) = e3

To compute a next_move, the code calls search, then selects the move from the edge that is
returned.

Check that this functor definition (Figure 1) fulfills the specification, provided the game G has
finitely deep game trees.
(If G has infinite sequences of legal moves, the search, evaluate, next_move functions may loop
forever.)

Also note where we took care to ensure that the search function only gets used on in-play game
states: the only way for a user of this structure to invoke this function is by calling next_move,
and the spec for GAME requires that this function is only ever used on an in-play state.

To test this functor code, we removed the signature ascriptions (to make the helper functions
inside the functor body visible). We also used a structure Seq that implements sequences as lists,
just to keep things simple for testing purposes. (Once tested, one should again ascribe the structures
to their respective signatures and use a parallel-friendly implementation of sequences.) See Figure 2
for a summary of the results. Check that you see the relationship between these results and the
shape of the labeled tree for Nim that we built in class last time. As we promised, the bottom-up
propagation of labels gets implemented by recursive function calling.
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functor FullMiniMax (G : GAME) : PLAYER =
struct

structure Game = G

type edge = G.move * G.est
fun edgemove (m,v) = m
fun edgeval (m,v) = v

fun lesseq(x, y) = (x=y) orelse
(case (x, y) of

(G.Definitely(G.Winner G.Minnie), _) => true
| (_, G.Definitely(G.Winner G.Maxie)) => true
| (G.Guess n, G.Definitely G.Draw) => (n <= 0)
| (G.Definitely G.Draw, G.Guess m) => (0 <= m)
| (G.Guess n, G.Guess m) => (n <= m)
| (_, _) => false)

(* max : edge * edge -> edge , min : edge * edge -> edge *)
fun max (e1, e2) = if lesseq(edgeval e2, edgeval e1) then e1 else e2
fun min (e1, e2) = if lesseq(edgeval e1, edgeval e2) then e1 else e2

(* choose : G.player -> edge Seq.seq -> edge *)
fun choose G.Maxie = Seq.reduce1 max

| choose G.Minnie = Seq.reduce1 min

(* search : G.state -> edge *)
(* REQUIRES: status(s) == In_play *)
fun search (s : G.state) : edge =

choose (G.player s)
(Seq.map
(fn m => (m, evaluate (G.make_move(s,m))))
(G.moves s))

(* evaluate : G.state -> G.est *)
and evaluate (s : G.state) : G.est =

(case G.status s of
G.Over(v) => G.Definitely(v)

| G.In_play => edgeval(search s))

(* recall: the signature requires that s be In_play. *)
val next_move = edgemove o search

end

Figure 1: FullMiniMax
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structure Nim =
struct ... end (* as last time, but without ascription *)

functor FullMiniMax (G : GAME) =
struct . . . end (* as above, but without ascription *)

structure FMMNimPlayer = FullMiniMax(Nim);
open Nim; (* only opening briefly for debugging; don’t do this in submitted code *)
open FMMNimPlayer;

(* Here we use a list implementation of sequences, so that SML shows us
what is visible, for this document.
More generally, when you are writing code, you will need to use the
provided sequence functions to inspect values.

*)

- evaluate(State(3,Maxie));
val it = Definitely (Winner Maxie) : est

- search(State(3, Maxie));
val it = (Move 2, Definitely (Winner Maxie)) : edge

- Seq.map (fn m => (m, evaluate(make_move(State(3, Maxie), m))))
(moves(State(3, Maxie)));

val it =
[(Move 1, Definitely (Winner Minnie)),
(Move 2, Definitely (Winner Maxie)),
(Move 3, Definitely (Winner Minnie))] : (move * est) Seq.seq

- Seq.reduce1 max it;
val it = (Move 2, Definitely (Winner Maxie)) : move * est

Figure 2: Testing FullMiniMax
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We can also use extensional equivalence to reason about game behavior. In particular, it follows
from the SML definitions that: (here we use the angle-bracket notation for sequences)

evaluate(State(3, Maxie))
∼= edgeval(search(State(3, Maxie)))
∼= edgeval(reduce1 max <(Move 1, evaluate(State(2, Minnie))),

(Move 2, evaluate(State(1, Minnie))),
(Move 3, evaluate(State(0, Minnie)))>)

evaluate(State(0, Minnie)) ∼= Definitely(Winner Minnie)

evaluate(State(1, Minnie))
∼= edgeval(search(State(1, Minnie)))
∼= edgeval(reduce1 min <(Move 1, evaluate(State(0, Maxie)))>)
∼= edgeval(Move 1, Definitely (Winner Maxie))
∼= Definitely (Winner Maxie)

evaluate(State(2, Minnie))
∼= edgeval(search(State(2, Minnie)))
∼= edgeval(reduce1 min <(Move 1, evaluate(State(1, Maxie))),

(Move 2, evaluate(State(0, Maxie)))>)
∼= edgeval(reduce1 min <(Move 1, Definitely(Winner Minnie)),

(Move 2, Definitely(Winner Maxie))>)
∼= edgeval(Move 1, Definitely(Winner Minnie))
∼= Definitely(Winner Minnie)

So we see that

evaluate(State(3, Maxie))
∼= edgeval(reduce1 max <(Move 1, evaluate(State(2, Minnie))),

(Move 2, evaluate(State(1, Minnie))),
(Move 3, evaluate(State(0, Minnie)))>)

∼= edgeval(reduce1 max <(Move 1, Definitely(Winner Minnie)),
(Move 2, Definitely(Winner Maxie)),
(Move 3, Definitely(Winner Minnie))>)

∼= edgeval(Move 2, Definitely(Winner Maxie))
∼= Definitely(Winner Maxie)

19



9.2 Depth-Bounded Minimax

Note that if we ask (using the unbounded minimax Nim player from above)

- evaluate(State(150, Maxie));

the computation takes a long time! Reason: the game tree with root 150 has depth 150, so this
function makes an enormous number of recursive calls.

Next, we implement a player that uses minimax to a chosen depth. If there are game states
still in-play at that depth, then the player calls the estimator to estimate the state value for
such game states (Figure 3). We present this as a functor applicable to an arbitrary GAME structure
coupled with a chosen search depth parameter. It will be convenient to introduce an extra signature
SETTINGS, given by:

signature SETTINGS =
sig

structure Game : GAME (* parameter *)
val depth : int

end

The implementation of bounded minimax is very similar in spirit to the previously presented
unbounded minimax. We’ve deliberately written the code and explanation to facilitate comparison
between the two implementations.

The function search takes a depth parameter and a state and chooses the max/min edge out of
the state (as appropriate for the player in that state). To compute all the edges, we pair each move
with the value of the state resulting from the move, as computed by the helper function evaluate,
which also takes a depth parameter. To evaluate a state, we return the outcome if the state is Over
or we use the estimator if we’re out of depth. Otherwise, we want to use search on the new states,
then forget the move component, as before. Again, evaluate and search are mutually recursive.

To compute a next_move, we search with the depth provided in Settings, then select the
move that is returned.

This functor (Figure 3) fulfills the specification, even if the game tree for G is infinitely deep. For
nonnegative values of d, search d returns a value when applied to an in-play state, and evaluate d
returns a value when applied to a state.
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functor MiniMax (Settings : SETTINGS) : PLAYER =
struct

structure Game = Settings.Game

(* We also abbreviate Game as G, to keep the notation simple below. *)
structure G = Game

type edge = G.move * G.est
fun edgemove (m,v) = m
fun edgeval (m,v) = v

fun lesseq(x, y) = (x=y) orelse
(case (x, y) of

(G.Definitely(G.Winner G.Minnie), _) => true
| (_, G.Definitely(G.Winner G.Maxie)) => true
| (G.Guess n, G.Definitely G.Draw) => (n <= 0)
| (G.Definitely G.Draw, G.Guess m) => (0 <= m)
| (G.Guess n, G.Guess m) => (n <= m)
| (_, _) => false)

(* max : edge * edge -> edge , min : edge * edge -> edge *)
fun max (e1, e2) = if lesseq(edgeval e2, edgeval e1) then e1 else e2
fun min (e1, e2) = if lesseq(edgeval e1, edgeval e2) then e1 else e2

(* choose : G.player -> edge Seq.seq -> edge *)
fun choose G.Maxie = Seq.reduce1 max
| choose G.Minnie = Seq.reduce1 min

(* search : int -> G.state -> edge *)
(* REQUIRES: d > 0, status(s) == In_play *)
fun search (d : int) (s : G.state) : edge =

choose (G.player s)
(Seq.map
(fn m => (m, evaluate (d - 1) (G.make_move(s,m))))
(G.moves s))

(* evaluate : int -> G.state -> G.est *)
(* REQUIRES: d >= 0. *)
and evaluate (d : int) (s : G.state) : G.est =

(case (G.status s, d) of
(G.Over(v), _) => G.Definitely(v)

| (G.In_play, 0) => G.estimate s
| (G.In_play, _) => edgeval(search d s))

(* recall: the signature requires that s be In_play. *)
val next_move = edgemove o (search Settings.depth)

end

Figure 3: Depth-bounded minimax
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9.3 Comparing Strategies

We can observe some differences in behavior that illustrate the way players behave when using
different strategies.

Minimax using the dumb estimator, searching to depth 4:

(* minimax up to depth 4, then uninformative guesses *)
structure MM4DumbNimPlayer = MiniMax(struct structure Game = DumbNim val depth = 4 end)

MM4DumbNimPlayer.next move DumbNim.start

This strategy picks Maxie’s first move, at the state consisting of 15 pieces, to be Move 1. This is
definitely not good! A smart player can win when presented with 14 pieces!

Why does Maxie make this choice? (The game tree depth is more than 4, so Maxie computes
the maximum of edges (Move 1, Guess 0), (Move 2, Guess 0) and (Move 3, Guess 0). This
computation yields Move(1, Guess 0), so the chosen move is Move 1, by the way max and reduce1
are implemented.)

Minimax using the dumb estimator, with unbounded search:

(* full minimax, never guesses *)
structure FMMDumbNimPlayer = FullMiniMax(DumbNim)

FMMDumbNimPlayer.next move DumbNim.start

This strategy picks Maxie’s first move to be Move 2 – the genius move! To be expected, since the
search tree is finite and we have full use of minimax. The estimator is irrelevant.

Minimax using the smart estimator, searching to depth 4:

(* minimax up to depth 4, then perfect estimation *)
structure MM4NimPlayer = MiniMax(struct structure Game = Nim val depth = 4 end)

MM4NimPlayer.next move Nim.start

This strategy picks Maxie’s first move to be Move 2 – again the genius move. Reason: even though
the game tree is deeper than 4 levels, the estimator in the Nim structure is smart enough to supply
useful information (in fact, perfect)!
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10 Referees and Tournaments

A tournament is a game, played by two players, starting from the initial state of the game.

10.1 Terse Referee

The simplest kind of referee that would make sense for two-person tournaments is one that takes
two players, starts at the initial state, and keeps letting the player whose turn it is choose the next
move, until the game is over, whereupon the referee prints a string indicating the outcome. (A more
verbose referee might also produce a running commentary by printing play-by-play information
throughout the tournament.)

To help with implementation, we augment the GAME signature with a function

outcome_to_string : outcome -> string

that turns a game outcome into a string. And then we need to augment the game structures (e.g.,
Nim and DumbNim) so that they also implement this operation. Let’s assume we’ve done this:

fun outcome_to_string (Winner Maxie) = "Maxie wins!"
| outcome_to_string (Winner Minnie) = "Minnie wins!"
| outcome_to_string (Draw) = "Game tied!"

As defined in Figure 4, the referee for a given game uses the game’s outcome_to_string function
to generate a “final outcome” string, and uses the built-in SML function

print : string -> unit

to print that string to the screen. 1

The previous description is almost enough, but there is a problem! Implicitly we assumed that
the two players were playing the same game. And the referee needs to be able to use the next move
functions of the two players, on the same type of state. But for all we know, Maxie might be
playing Connect 4 and Minnie playing chess, thinking they are playing the same game! To fix
this, we use a sharing constraint : we define a signature for two players playing the same game,
with sharing constraints that require the two player structures to have the same types of game
states and the same types of game moves. The effect is that any structure with this signature
will involve two players for which the referee can indeed supervise. (Sharing constraints are a
feature of the SML module system that we see here for the first time but won’t discuss in detail or
use much again. Sharing constraints let you demand coherence between structures, which can be
important for combining different modules together into larger pieces. We could also replace the
two sharing type constraints with the single constraint sharing Maxie.Game = Minnie.Game in
this example.)

signature TWO_PLAYERS =
sig

structure Maxie : PLAYER (* parameter *)
structure Minnie : PLAYER (* parameter *)
sharing type Maxie.Game.state = Minnie.Game.state
sharing type Maxie.Game.move = Minnie.Game.move

end
1The print function, and several other useful input/output primitives, are implemented in a structure TextIO.
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functor Referee (P : TWO_PLAYERS) : sig val go : unit -> unit end =
struct

structure G = P.Maxie.Game
structure H = P.Minnie.Game

(* run: G.state -> string *)
fun run s =

(case (G.status s, G.player s) of
(G.Over(v), _) => G.outcome_to_string(v)

| (G.In_play, G.Maxie) => run(G.make_move(s, P.Maxie.next_move s))
| (G.In_play, G.Minnie) => run(H.make_move(s, P.Minnie.next_move s)))

fun go () = print(run(G.start) ^ "\n")
end

Figure 4: A simple Referee.

Given the sharing constraints, the referee’s body (Figure 4) type checks, because it may assume
that the state and move types are the same for the two players. (If we tried without the sharing
constraints, SML would give us a type error.)

To implement TWO_PLAYERS, we have to give definitions for each component, i.e., structures for
each player, and we must ensure that the sharing constraints hold. We don’t need to type any
extra lines of code here; SML will figure out if the sharing constraints are valid, given the structure
definitions that we supply.

The referee takes two players and produces a function go : unit -> unit that lets the players
play their game, beginning from the initial state, then prints out the final outcome. Because unit
is a type with just one value, one sees from the type of go that we must be using this function for
some kind of effect (in this case, looping and printing), not for producing a value.

A terse referee appears in Figure 4. Here is an example of its use:

- structure S = FullMiniMax(Nim);
- structure R =

Referee(struct structure Maxie = S structure Minnie = S end);
- R.go ( );
Maxie wins!
val it = ( ) : unit
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10.2 A More Verbose Referee

To implement a more verbose referee we would need to equip games with additional helper functions
such as:

val player_to_string : player -> string
val move_to_string : move -> string
val state_to_string : state -> string

and we would then extend the game structures to implement these too. For example, we might
augment Nim with

fun player_to_string Maxie = "Maxie"
| player_to_string Minnie = "Minnie"

fun state_to_string (State (n, p)) =
Int.toString n ^ " pieces left, and " ^ player_to_string p ^ "’s turn"

fun move_to_string (Move k) = Int.toString k

An functor implementation of this chatty referee appears in Figure 5.

Here are some results that illustrate the referee’s behavior.

- structure S = FullMiniMax(Nim);
- structure R =

VerboseReferee(struct structure Maxie = S structure Minnie = S end);
- R.go ( );
15 pieces left, and Maxie’s turn
The move is 2
13 pieces left, and Minnie’s turn
The move is 1
12 pieces left, and Maxie’s turn
The move is 3
9 pieces left, and Minnie’s turn
The move is 1
8 pieces left, and Maxie’s turn
The move is 3
5 pieces left, and Minnie’s turn
The move is 1
4 pieces left, and Maxie’s turn
The move is 3
1 pieces left, and Minnie’s turn
The move is 1
0 pieces left, and Maxie’s turn
Maxie wins!
val it = () : unit

This is a more chatty blow-by-blow account of the same game run as before.
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functor VerboseReferee (P : TWO_PLAYERS) : sig val go : unit -> unit end =
struct

structure G = P.Maxie.Game

(* play : state -> unit *)
fun play s =

(case G.status s of
G.Over(v) => print(G.outcome_to_string(v) ^ "\n")

| G.In_play =>
let

val (s_to_string, m_to_string, next_move, make_move) =
(case G.player s of

G.Maxie =>
(P.Maxie.Game.state_to_string, P.Maxie.Game.move_to_string,
P.Maxie.next_move, P.Maxie.Game.make_move)

| G.Minnie =>
(P.Minnie.Game.state_to_string, P.Minnie.Game.move_to_string,
P.Minnie.next_move, P.Minnie.Game.make_move))

val m = next_move(s)
val s’ = make_move(s, m))

in
(print ("The move is " ^ m_to_string m ^ "\n");
print (s_to_string s’ ^ "\n");
play s’)

end

fun go () =
let

val start = G.start
val _ = print((case G.player start of

G.Maxie => P.Maxie.Game.state_to_string
| G.Minnie => P.Minnie.Game.state_to_string) start ^ "\n")

in
play start

end
end

Figure 5: A more verbose referee.
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As a final example, you might also like to see what happens when this referee plays two DumbNim
players (using minimax but with different search depth) against each other. In fact, you might want
to predict the likely results. For example:

structure DumbNim4v8Tournament =
VerboseReferee
(struct

structure Maxie = MiniMax(struct structure Game = DumbNim val depth = 4 end)
structure Minnie = MiniMax(struct structure Game = DumbNim val depth = 8 end)

end)

- DumbNim4v8Tournament.go();
15 pieces left, and Maxie’s turn
The move is 1
14 pieces left, and Minnie’s turn
The move is 1
13 pieces left, and Maxie’s turn
The move is 1
12 pieces left, and Minnie’s turn
The move is 3
9 pieces left, and Maxie’s turn
The move is 1
8 pieces left, and Minnie’s turn
The move is 3
5 pieces left, and Maxie’s turn
The move is 1
4 pieces left, and Minnie’s turn
The move is 3
1 pieces left, and Maxie’s turn
The move is 1
0 pieces left, and Minnie’s turn
Minnie wins!
val it = () : unit

11 Human Player

To implement a “human” player, one that reads input and interprets it as instructions on how to
make moves, we need to further extend the signature of games with an I/O function:

parse_move : state -> string -> move option

We then need to extend the game structure definitions to include such parsers. For instance, in
Nim we could include:

fun parse_move (State (n, _)) str =
let

fun enough k = if k <= n then SOME(Move k) else NONE
in

(case str of
"1" => enough 1

| "2" => enough 2
| "3" => enough 3
| _ => NONE)

end
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If the user types in a string str, parse_move state str checks whether the string str repre-
sents an appropriate number of pieces that can be legally removed given the game state state.

functor HumanPlayer (G : GAME) : PLAYER =
struct
structure Game = G

fun readmove () =
(case TextIO.inputLine TextIO.stdIn of

NONE => raise Fail "early input termination; aborting"
| SOME(str) => SOME(String.substring(str, 0, String.size(str)-1)))

(* This strips off a trailing newline character, as required by G.parse_move. *)

fun parsemove(state, NONE) = NONE
| parsemove(state, SOME(str)) = G.parse_move state str

fun player_to_string (G.Maxie) = "Maxie"
| player_to_string (G.Minnie) = "Minnie"

fun next_move state =
let

val _ = print(player_to_string(G.player state) ^ ", please type your move: ")
in

(case parsemove(state, readmove()) of
SOME(m) => m

| NONE => (print "Something is wrong; bad input or bad move.\n";
next_move state))

end
end

The SML code implementing the “human player” uses some additional components of TextIO.
First, the code prints a prompt asking for a move. Then it reads a line of input from stdIn (the
keyboard) and tries to parse that input into a valid move. If this fails, the code prints an error
and asks again. If this succeeds, the code returns the move. Since this construction works for an
arbitrary game, we use a functor.

Finally, putting it all together, here a human may play Nim against depth-bounded MiniMax:

structure NimH = HumanPlayer(Nim)

structure Set3 : SETTINGS =
struct

structure Game = Nim
val depth = 3

end

structure Nim3 = MiniMax(Set3)

structure HvMM3 : TWO PLAYERS =
struct

structure Maxie = NimH
structure Minnie = Nim3

end

structure Nim HvMM3 = VerboseReferee(HvMM3);

Nim HvMM3.go();
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