
7 Priority Queueing and Capacity Planning for Server Farms

Multiserver priority queues Much of queueing theory is devoted to analyzing priority queues,
where jobs (customers) are labeled and served in accordancewith a priority scheme: high-priority
jobs (H) preempt medium-priority jobs (M), which in turn preempt low-priority jobs (L) in the
queue. Priority queueing comes up in a wide array of applications: sometimes users pay for
their jobs to have higher priority; other times the priorityof a job is artificially created, so as
to maximize a company’s profit by favoring big spenders [16, 26]. While priority queueing in a
single-server systemhas been well understood since the 1950’s [3], priority queueing in amulti-
server system, see Figure 1(left), is far less tractable. Almost all papers analyzing multi-server
priority queues are approximations, restricted to only twopriority classes and exponential job size
distributions, [14, 12, 21, 14, 12, 15, 20, 17, 20, 18, 6, 7, 5,13]. For more than two priority classes,
only coarse approximations exist, either based on approximating multi-server priority behavior by
single-server priority behavior [2], or via aggregating priority classes [18, 21]. We ask:

What do per-class mean response times look like for a multi-server system? How do
these compare with those for a single-server system?

Difficulty/ Our approach What makes this problem so difficult is the need for a Markov chain
which grows unboundedly inm dimensions, wherem is the number of classes. Our approach is
very different from all above approaches. We deployrecursive dimensionality reduction, RDR,
which combines ideas from [27], [4], and [19]. The idea is to reduce anmD-infinite chain to a
1D-infinite chain, one dimension at a time. As each class is added, the effect of all the higher
priority classes on the newly-added class is analyzed usinga collection of busy periods, see [11].
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Figure 1: (Left) Server farm where high-priority jobs served first. (Right) Two-server system,
M/G/2, with 4 identical job classes and loadρ = 0.8: mean per-class response times as a function
of job size variability (C2).

Our results RDR is the first technique to provide response time numbers form > 2 priority classes
under general job size distributions [11]. It is also a highly accurate method. Figure 1(right) shows
results for per-class mean response times for 4 classes in anM/G/2, shown as a function of the
variability of the job size distribution. It is interestingto note (not shown in figure) that these
numbers are quite different from what would be obtained using a single server approximation of
the system. A single (double-speed) server can perform farworsethan a 2-server system when job
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size variability is high, since there is no way for small jobsto overtake large ones in a single-server
system.

Capacity-planning problemsThe above observation prompts us to ask a capacity-planningques-
tion:

When is one fast server better thank slow servers, each running at1/kth the speed?
It turns out that answers to questions like these depend greatly on how jobs are prior-
itized in the multiserver system.

Our results In [28] we find that the optimal number of servers depends onρ (high load implies
more slow servers are better) andC2 (more variability implies more slow servers are better). Inter-
estingly, we find that when classes are prioritizedeffectively, with shorter jobs being given high pri-
ority so as to minimize mean response time, then the optimal solution points to fewer fast servers,
see Figure 2(a), as compared withpoor prioritization, where longer jobs are given high priority,
Figure 2(b). Capacity planning is an extremely important problem in operations management. In
[1] we look at thedynamic staffing problem, where staffers (or servers) are allowed to migrate to
different queues as needed, and develop an even more generaltechnique to handle that problem.
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Figure 2:How many servers is best, as a function of variability of highpriority jobs and load?

Impact Dimensionality Reduction (DR), Recursive Dimensionality Reduction (RDR), and further
generalizations thereof, have been applied to a long list ofproblems for which there was previously
no way of deriving accurate performance numbers: [11, 10, 28, 1, 24, 25, 8, 23, 9, 22].
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