7 Priority Queueing and Capacity Planning for Server Farms

Multiserver priority queues Much of queueing theory is devoted to analyzing priority ugs
where jobs (customers) are labeled and served in accoreatica priority scheme: high-priority
jobs (H) preempt medium-priority jobs (M), which in turn prapt low-priority jobs (L) in the
gueue. Priority queueing comes up in a wide array of applinat sometimes users pay for
their jobs to have higher priority; other times the priordf/a job is artificially created, so as
to maximize a company’s profit by favoring big spenders [, 2Vhile priority queueing in a
single-server systetmas been well understood since the 1950’s [3], priority guayin amulti-
server systemsee Figure 1(left), is far less tractable. Almost all papemalyzing multi-server
priority queues are approximations, restricted to only paiority classes and exponential job size
distributions, [14, 12, 21, 14, 12, 15, 20, 17, 20, 18, 6, 1.3, For more than two priority classes,
only coarse approximations exist, either based on appietiiigy multi-server priority behavior by
single-server priority behavior [2], or via aggregatingppty classes [18, 21]. We ask:

What do per-class mean response times look like for a menties system? How do
these compare with those for a single-server system?

Difficulty/ Our approach What makes this problem so difficult is the need for a Markoaich
which grows unboundedly im dimensionswherem is the number of classes. Our approach is
very different from all above approaches. We deplegursive dimensionality reductipiRDR,
which combines ideas from [27], [4], and [19]. The idea iséduce annD-infinite chain to a
1D-infinite chain, one dimension at a time. As each class ieddthe effect of all the higher
priority classes on the newly-added class is analyzed wsoailection of busy periods, see [11].
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Figure 1: (Left) Server farm where high-priority jobs served first.iglir) Two-server system,
M/G/2, with 4 identical job classes and load= 0.8: mean per-class response times as a function
of job size variability C?).

Our results RDR is the first technique to provide response time numbers:for 2 priority classes
under general job size distributions [11]. Itis also a hygddcurate method. Figure 1(right) shows
results for per-class mean response times for 4 classes Mi@r2, shown as a function of the
variability of the job size distribution. It is interestirtg note (not shown in figure) that these
numbers are quite different from what would be obtainedgisirsingle server approximation of
the system. A single (double-speed) server can performdasethan a 2-server system when job



size variability is high, since there is no way for small jeb®vertake large ones in a single-server
system.

Capacity-planning problemsThe above observation prompts us to ask a capacity-plamuies-
tion:

When is one fast server better thaslow servers, each running &t kth the speed?
It turns out that answers to questions like these dependlgrea how jobs are prior-
itized in the multiserver system.

Our results In [28] we find that the optimal number of servers dependg @nigh load implies
more slow servers are better) afid (more variability implies more slow servers are betterjeitn
estingly, we find that when classes are prioritieéféctively with shorter jobs being given high pri-
ority so as to minimize mean response time, then the optiotatien points to fewer fast servers,
see Figure 2(a), as compared wtbor prioritization, where longer jobs are given high priority,
Figure 2(b). Capacity planning is an extremely importaobpem in operations management. In
[1] we look at thedynamic staffing problepwhere staffers (or servers) are allowed to migrate to
different queues as needed, and develop an even more gwmailque to handle that problem.

A

40

40

35f 35¢

30F 301

6 or more
best

25r 25¢

o T o T

O 20r O 20t
15f 15}
10 1 best 10f
5- " 5l
6] 012 014 016 018 1 o] 012 0‘.4 0.6 0.8 1
p p
(a) Effective prioritization (b) Poor prioritization

Figure 2:How many servers is best, as a function of variability of hgilority jobs and load?

Impact Dimensionality ReductionrdR), Recursive Dimensionality ReductioRDR), and further
generalizations thereof, have been applied to a long listaflems for which there was previously
no way of deriving accurate performance numbers: [11, 101284, 25, 8, 23, 9, 22].
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